Properties

Label 1824.b
Number of curves $1$
Conductor $1824$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("b1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 1824.b1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(19\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + T + 5 T^{2}\) 1.5.b
\(7\) \( 1 + T + 7 T^{2}\) 1.7.b
\(11\) \( 1 - 3 T + 11 T^{2}\) 1.11.ad
\(13\) \( 1 + 13 T^{2}\) 1.13.a
\(17\) \( 1 + 7 T + 17 T^{2}\) 1.17.h
\(23\) \( 1 - 8 T + 23 T^{2}\) 1.23.ai
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 1824.b do not have complex multiplication.

Modular form 1824.2.a.b

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - q^{5} - q^{7} + q^{9} + 3 q^{11} + q^{15} - 7 q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 1824.b

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1824.b1 1824g1 \([0, -1, 0, 19, -123]\) \(175616/1539\) \(-6303744\) \([]\) \(256\) \(-0.013975\) \(\Gamma_0(N)\)-optimal