# Properties

 Label 182070cj8 Conductor 182070 Discriminant -87716431616002508660610150 j-invariant $$-\frac{187778242790732059201}{4984939585440150}$$ CM no Rank 2 Torsion Structure $$\Z/{2}\Z$$

# Related objects

Show commands for: Magma / Pari/GP / SageMath

## Minimal Weierstrass equation

sage: E = EllipticCurve([1, -1, 0, -310299354, 2151664635010]) # or

sage: E = EllipticCurve("182070cj8")

gp: E = ellinit([1, -1, 0, -310299354, 2151664635010]) \\ or

gp: E = ellinit("182070cj8")

magma: E := EllipticCurve([1, -1, 0, -310299354, 2151664635010]); // or

magma: E := EllipticCurve("182070cj8");

$$y^2 + x y = x^{3} - x^{2} - 310299354 x + 2151664635010$$

## Mordell-Weil group structure

$$\Z^2 \times \Z/{2}\Z$$

### Infinite order Mordell-Weil generators and heights

sage: E.gens()

magma: Generators(E);

 $$P$$ = $$\left(9021, -298633\right)$$ $$\left(\frac{5609561}{361}, -\frac{7187232067}{6859}\right)$$ $$\hat{h}(P)$$ ≈ 1.025859642368067 5.7680724492400435

## Torsion generators

sage: E.torsion_subgroup().gens()

gp: elltors(E)

magma: TorsionSubgroup(E);

$$\left(-\frac{81565}{4}, \frac{81565}{8}\right)$$

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

$$\left(-11461, 2055719\right)$$, $$\left(-11461, -2044258\right)$$, $$\left(-5385, 1917490\right)$$, $$\left(-5385, -1912105\right)$$, $$\left(5691, 752167\right)$$, $$\left(5691, -757858\right)$$, $$\left(9021, 289612\right)$$, $$\left(9021, -298633\right)$$, $$\left(11471, 312887\right)$$, $$\left(11471, -324358\right)$$

## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor: $$182070$$ = $$2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 17^{2}$$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $$-87716431616002508660610150$$ = $$-1 \cdot 2 \cdot 3^{7} \cdot 5^{2} \cdot 7^{16} \cdot 17^{6}$$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$-\frac{187778242790732059201}{4984939585440150}$$ = $$-1 \cdot 2^{-1} \cdot 3^{-1} \cdot 5^{-2} \cdot 7^{-16} \cdot 241^{3} \cdot 23761^{3}$$ Endomorphism ring: $$\Z$$ (no Complex Multiplication) Sato-Tate Group: $\mathrm{SU}(2)$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Rank: $$2$$ sage: E.regulator()  magma: Regulator(E); Regulator: $$5.57203564828$$ sage: E.period_lattice().omega()  gp: E.omega[1]  magma: RealPeriod(E); Real period: $$0.0603384713115$$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $$128$$  = $$1\cdot2\cdot2\cdot2^{4}\cdot2$$ sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E)); Torsion order: $$2$$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $$1$$ (rounded)

## Modular invariants

#### Modular form 182070.2.a.bi

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

magma: ModularForm(E);

$$q - q^{2} + q^{4} + q^{5} + q^{7} - q^{8} - q^{10} - 4q^{11} - 2q^{13} - q^{14} + q^{16} + 4q^{19} + O(q^{20})$$

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 83886080 $$\Gamma_0(N)$$-optimal: no Manin constant: 1

#### Special L-value

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar[2]/factorial(ar[1])

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

$$L^{(2)}(E,1)/2!$$ ≈ $$10.7586596195$$

## Local data

This elliptic curve is not semistable.

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$2$$ $$1$$ $$I_{1}$$ Non-split multiplicative 1 1 1 1
$$3$$ $$2$$ $$I_1^{*}$$ Additive -1 2 7 1
$$5$$ $$2$$ $$I_{2}$$ Split multiplicative -1 1 2 2
$$7$$ $$16$$ $$I_{16}$$ Split multiplicative -1 1 16 16
$$17$$ $$2$$ $$I_0^{*}$$ Additive 1 2 6 0

## Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X211.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^4\Z_2)$ generated by $\left(\begin{array}{rr} 3 & 3 \\ 0 & 3 \end{array}\right),\left(\begin{array}{rr} 11 & 11 \\ 8 & 5 \end{array}\right),\left(\begin{array}{rr} 15 & 0 \\ 8 & 5 \end{array}\right),\left(\begin{array}{rr} 13 & 13 \\ 8 & 3 \end{array}\right),\left(\begin{array}{rr} 11 & 11 \\ 0 & 7 \end{array}\right)$ and has index 48.

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ except those listed.

prime Image of Galois representation
$$2$$ B

## $p$-adic data

### $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]

$$p$$-adic regulators are not yet computed for curves that are not $$\Gamma_0$$-optimal.

No Iwasawa invariant data is available for this curve.

## Isogenies

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 2, 4, 8 and 16.
Its isogeny class 182070cj consists of 8 curves linked by isogenies of degrees dividing 16.

## Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base-change curve
2 $$\Q(\sqrt{-6})$$ $$\Z/2\Z \times \Z/2\Z$$ Not in database
$$\Q(\sqrt{-34})$$ $$\Z/4\Z$$ Not in database
$$\Q(\sqrt{51})$$ $$\Z/4\Z$$ Not in database
4 $$\Q(\sqrt{-3}, \sqrt{-17})$$ $$\Z/8\Z$$ Not in database
$$\Q(\sqrt{-6}, \sqrt{-34})$$ $$\Z/2\Z \times \Z/4\Z$$ Not in database
$$\Q(\sqrt{2}, \sqrt{51})$$ $$\Z/8\Z$$ Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.