Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy=x^3-x^2-9788976x+10733299632\)
|
(homogenize, simplify) |
|
\(y^2z+xyz=x^3-x^2z-9788976xz^2+10733299632z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-156623619x+686774552830\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(3051, 94707)$ | $4.0825417379121504917071944943$ | $\infty$ |
| $(-3576, 1788)$ | $0$ | $2$ |
| $(2232, -1116)$ | $0$ | $2$ |
Integral points
\( \left(-3576, 1788\right) \), \( \left(2232, -1116\right) \), \( \left(3051, 94707\right) \), \( \left(3051, -97758\right) \), \( \left(8524, 735048\right) \), \( \left(8524, -743572\right) \)
Invariants
| Conductor: | $N$ | = | \( 18018 \) | = | $2 \cdot 3^{2} \cdot 7 \cdot 11 \cdot 13$ |
|
| Discriminant: | $\Delta$ | = | $10287925635705885223056$ | = | $2^{4} \cdot 3^{22} \cdot 7^{2} \cdot 11^{4} \cdot 13^{4} $ |
|
| j-invariant: | $j$ | = | \( \frac{142301015703162602447617}{14112380844589691664} \) | = | $2^{-4} \cdot 3^{-16} \cdot 7^{-2} \cdot 11^{-4} \cdot 13^{-4} \cdot 52207873^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.9603757284362917837725307494$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $2.4110695841022369380749081309$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0052579853297323$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $6.113188262263289$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $4.0825417379121504917071944943$ |
|
| Real period: | $\Omega$ | ≈ | $0.12494859167795724645293222900$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 128 $ = $ 2\cdot2^{2}\cdot2\cdot2\cdot2^{2} $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $4.0808627249488259270628896262 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 4.080862725 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.124949 \cdot 4.082542 \cdot 128}{4^2} \\ & \approx 4.080862725\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 1572864 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
| $3$ | $4$ | $I_{16}^{*}$ | additive | -1 | 2 | 22 | 16 |
| $7$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
| $11$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
| $13$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2Cs | 8.24.0.10 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1848 = 2^{3} \cdot 3 \cdot 7 \cdot 11 \), index $192$, genus $1$, and generators
$\left(\begin{array}{rr} 313 & 156 \\ 156 & 925 \end{array}\right),\left(\begin{array}{rr} 1841 & 8 \\ 1840 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 5 & 4 \\ 1844 & 1845 \end{array}\right),\left(\begin{array}{rr} 619 & 1086 \\ 1260 & 229 \end{array}\right),\left(\begin{array}{rr} 673 & 1236 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 1578 & 1843 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1231 & 0 \\ 0 & 1847 \end{array}\right)$.
The torsion field $K:=\Q(E[1848])$ is a degree-$10218700800$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1848\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | nonsplit multiplicative | $4$ | \( 9 = 3^{2} \) |
| $3$ | additive | $8$ | \( 2002 = 2 \cdot 7 \cdot 11 \cdot 13 \) |
| $7$ | nonsplit multiplicative | $8$ | \( 2574 = 2 \cdot 3^{2} \cdot 11 \cdot 13 \) |
| $11$ | nonsplit multiplicative | $12$ | \( 1638 = 2 \cdot 3^{2} \cdot 7 \cdot 13 \) |
| $13$ | split multiplicative | $14$ | \( 1386 = 2 \cdot 3^{2} \cdot 7 \cdot 11 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 18018.n
consists of 6 curves linked by isogenies of
degrees dividing 8.
Twists
The minimal quadratic twist of this elliptic curve is 6006.bb5, its twist by $-3$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \oplus \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-3}) \) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{3}, \sqrt{7})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{3}, \sqrt{-7})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-3}, \sqrt{22})\) | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $8$ | 8.0.49787136.1 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.11662935330816.20 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | 16.0.34822159495883806555961819136.8 | \(\Z/4\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | nonsplit | add | ord | nonsplit | nonsplit | split | ord | ord | ord | ord | ord | ord | ord | ord | ord |
| $\lambda$-invariant(s) | 4 | - | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 3 | 1 | 1 | 1 |
| $\mu$-invariant(s) | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.