Show commands: SageMath
Rank
The elliptic curves in class 1800.j have rank \(1\).
L-function data
| Bad L-factors: |
| |||||||||||||||||||||||||||
| Good L-factors: |
| |||||||||||||||||||||||||||
| See L-function page for more information | ||||||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 1800.j do not have complex multiplication.Modular form 1800.2.a.j
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 1800.j
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 1800.j1 | 1800k2 | \([0, 0, 0, -255, -1550]\) | \(78608\) | \(23328000\) | \([2]\) | \(384\) | \(0.22266\) | |
| 1800.j2 | 1800k1 | \([0, 0, 0, -30, 25]\) | \(2048\) | \(1458000\) | \([2]\) | \(192\) | \(-0.12391\) | \(\Gamma_0(N)\)-optimal |