Show commands for:
SageMath
sage: E = EllipticCurve("dy1")
sage: E.isogeny_class()
Elliptic curves in class 179520.dy
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
179520.dy1 | 179520da2 | [0, -1, 0, -9185, -213375] | [2] | 393216 | |
179520.dy2 | 179520da1 | [0, -1, 0, 1695, -24063] | [2] | 196608 | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 179520.dy have rank \(1\).
Complex multiplication
The elliptic curves in class 179520.dy do not have complex multiplication.Modular form 179520.2.a.dy
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.