Properties

Label 17787k
Number of curves $2$
Conductor $17787$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("k1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 17787k have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1 + T\)
\(7\)\(1\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + T + 2 T^{2}\) 1.2.b
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(17\) \( 1 - 4 T + 17 T^{2}\) 1.17.ae
\(19\) \( 1 + 8 T + 19 T^{2}\) 1.19.i
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 17787k do not have complex multiplication.

Modular form 17787.2.a.k

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{2} - q^{3} + 2 q^{4} + 2 q^{5} + 2 q^{6} + q^{9} - 4 q^{10} - 2 q^{12} + q^{13} - 2 q^{15} - 4 q^{16} - 2 q^{18} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 13 \\ 13 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 17787k

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
17787.b2 17787k1 \([0, -1, 1, -282, 2078]\) \(-28672/3\) \(-260419467\) \([]\) \(8400\) \(0.35386\) \(\Gamma_0(N)\)-optimal
17787.b1 17787k2 \([0, -1, 1, -110392, -14092002]\) \(-1713910976512/1594323\) \(-138397581961947\) \([]\) \(109200\) \(1.6363\)