Properties

Label 17787.o
Number of curves 4
Conductor 17787
CM no
Rank 0
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath

sage: E = EllipticCurve("17787.o1")
sage: E.isogeny_class()

Elliptic curves in class 17787.o

sage: E.isogeny_class().curves
LMFDB label Cremona label Weierstrass coefficients Torsion order Modular degree Optimality
17787.o1 17787u3 [1, 0, 0, -868722, 311273073] 2 207360  
17787.o2 17787u2 [1, 0, 0, -68307, 2152800] 4 103680  
17787.o3 17787u1 [1, 0, 0, -38662, -2904637] 2 51840 \(\Gamma_0(N)\)-optimal
17787.o4 17787u4 [1, 0, 0, 257788, 16827075] 2 207360  

Rank

sage: E.rank()

The elliptic curves in class 17787.o have rank \(0\).

Modular form 17787.2.a.o

sage: E.q_eigenform(10)
\( q - q^{2} + q^{3} - q^{4} + 2q^{5} - q^{6} + 3q^{8} + q^{9} - 2q^{10} - q^{12} - 2q^{13} + 2q^{15} - q^{16} - 2q^{17} - q^{18} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels.