Properties

Label 17787.bd
Number of curves $1$
Conductor $17787$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bd1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 17787.bd1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1 - T\)
\(7\)\(1\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 - 2 T + 2 T^{2}\) 1.2.ac
\(5\) \( 1 + T + 5 T^{2}\) 1.5.b
\(13\) \( 1 - 6 T + 13 T^{2}\) 1.13.ag
\(17\) \( 1 - 7 T + 17 T^{2}\) 1.17.ah
\(19\) \( 1 - 8 T + 19 T^{2}\) 1.19.ai
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 - 4 T + 29 T^{2}\) 1.29.ae
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 17787.bd do not have complex multiplication.

Modular form 17787.2.a.bd

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{2} + q^{3} + 2 q^{4} - q^{5} + 2 q^{6} + q^{9} - 2 q^{10} + 2 q^{12} + 6 q^{13} - q^{15} - 4 q^{16} + 7 q^{17} + 2 q^{18} + 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 17787.bd

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
17787.bd1 17787x1 \([0, 1, 1, -4152276, -3246949051]\) \(313944395776/1240029\) \(31272425262685292301\) \([]\) \(1115136\) \(2.5980\) \(\Gamma_0(N)\)-optimal