Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy=x^3-16650x-8601633\)
|
(homogenize, simplify) |
|
\(y^2z+xyz=x^3-16650xz^2-8601633z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-21578427x-401253053994\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(927/4, -927/8)$ | $0$ | $2$ |
Integral points
None
Invariants
| Conductor: | $N$ | = | \( 17745 \) | = | $3 \cdot 5 \cdot 7 \cdot 13^{2}$ |
|
| Discriminant: | $\Delta$ | = | $-31657134775745115$ | = | $-1 \cdot 3^{8} \cdot 5 \cdot 7 \cdot 13^{10} $ |
|
| j-invariant: | $j$ | = | \( -\frac{105756712489}{6558605235} \) | = | $-1 \cdot 3^{-8} \cdot 5^{-1} \cdot 7^{-1} \cdot 13^{-4} \cdot 4729^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.8459549640224023211195048858$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.56348028529163395309276116502$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9573510240464985$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.646198176978782$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $0.16287119287403643277683433052$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 2^{3}\cdot1\cdot1\cdot2^{2} $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L(E,1)$ | ≈ | $1.3029695429922914622146746442 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 1.302969543 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.162871 \cdot 1.000000 \cdot 32}{2^2} \\ & \approx 1.302969543\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 172032 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $3$ | $8$ | $I_{8}$ | split multiplicative | -1 | 1 | 8 | 8 |
| $5$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
| $7$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
| $13$ | $4$ | $I_{4}^{*}$ | additive | 1 | 2 | 10 | 4 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 8.12.0.6 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 3640 = 2^{3} \cdot 5 \cdot 7 \cdot 13 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 3079 & 3632 \\ 1396 & 3607 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 736 & 3 \\ 5 & 2 \end{array}\right),\left(\begin{array}{rr} 2283 & 2276 \\ 2322 & 461 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 3634 & 3635 \end{array}\right),\left(\begin{array}{rr} 459 & 458 \\ 1378 & 3195 \end{array}\right),\left(\begin{array}{rr} 3633 & 8 \\ 3632 & 9 \end{array}\right),\left(\begin{array}{rr} 2084 & 1 \\ 1063 & 6 \end{array}\right)$.
The torsion field $K:=\Q(E[3640])$ is a degree-$811550638080$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/3640\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | good | $2$ | \( 5915 = 5 \cdot 7 \cdot 13^{2} \) |
| $3$ | split multiplicative | $4$ | \( 5915 = 5 \cdot 7 \cdot 13^{2} \) |
| $5$ | split multiplicative | $6$ | \( 3549 = 3 \cdot 7 \cdot 13^{2} \) |
| $7$ | split multiplicative | $8$ | \( 2535 = 3 \cdot 5 \cdot 13^{2} \) |
| $13$ | additive | $98$ | \( 105 = 3 \cdot 5 \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 17745w
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 1365c4, its twist by $13$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-35}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{91}) \) | \(\Z/4\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-65}) \) | \(\Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-35}, \sqrt{-65})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | 4.2.74197760.1 | \(\Z/8\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.1433076736000000.1 | \(\Z/8\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $8$ | deg 8 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/16\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 13 |
|---|---|---|---|---|---|
| Reduction type | ord | split | split | split | add |
| $\lambda$-invariant(s) | 4 | 1 | 5 | 1 | - |
| $\mu$-invariant(s) | 2 | 0 | 0 | 0 | - |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 3$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.