Show commands for:
SageMath
sage: E = EllipticCurve("do1")
sage: E.isogeny_class()
Elliptic curves in class 177450.do
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
177450.do1 | 177450hr3 | [1, 0, 1, -1578126, 762930898] | [2] | 3538944 | |
177450.do2 | 177450hr2 | [1, 0, 1, -99376, 11725898] | [2, 2] | 1769472 | |
177450.do3 | 177450hr1 | [1, 0, 1, -14876, -442102] | [2] | 884736 | \(\Gamma_0(N)\)-optimal |
177450.do4 | 177450hr4 | [1, 0, 1, 27374, 39610898] | [2] | 3538944 |
Rank
sage: E.rank()
The elliptic curves in class 177450.do have rank \(0\).
Complex multiplication
The elliptic curves in class 177450.do do not have complex multiplication.Modular form 177450.2.a.do
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.