Properties

Label 176b
Number of curves $3$
Conductor $176$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("b1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 176b have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(11\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - T + 3 T^{2}\) 1.3.ab
\(5\) \( 1 - T + 5 T^{2}\) 1.5.ab
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 - T + 23 T^{2}\) 1.23.ab
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 176b do not have complex multiplication.

Modular form 176.2.a.b

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + q^{5} + 2 q^{7} - 2 q^{9} - q^{11} + 4 q^{13} + q^{15} - 2 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrr} 1 & 5 & 25 \\ 5 & 1 & 5 \\ 25 & 5 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 176b

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
176.b3 176b1 \([0, 1, 0, -5, -13]\) \(-4096/11\) \(-45056\) \([]\) \(8\) \(-0.41958\) \(\Gamma_0(N)\)-optimal
176.b2 176b2 \([0, 1, 0, -165, 1427]\) \(-122023936/161051\) \(-659664896\) \([]\) \(40\) \(0.38514\)  
176.b1 176b3 \([0, 1, 0, -125125, 16994227]\) \(-52893159101157376/11\) \(-45056\) \([]\) \(200\) \(1.1899\)