Show commands for: Magma / SageMath / Pari/GP

## Minimal Weierstrass equation

magma: E := EllipticCurve([1, 0, 1, -35716447, -66790896769]); // or

magma: E := EllipticCurve("17661f5");

sage: E = EllipticCurve([1, 0, 1, -35716447, -66790896769]) # or

sage: E = EllipticCurve("17661f5")

gp: E = ellinit([1, 0, 1, -35716447, -66790896769]) \\ or

gp: E = ellinit("17661f5")

$$y^2 + x y + y = x^{3} - 35716447 x - 66790896769$$

## Mordell-Weil group structure

$$\Z\times \Z/{2}\Z$$

### Infinite order Mordell-Weil generator and height

magma: Generators(E);

sage: E.gens()

 $$P$$ = $$\left(\frac{195499}{25}, \frac{44947897}{125}\right)$$ $$\hat{h}(P)$$ ≈ 3.82287302585

## Torsion generators

magma: TorsionSubgroup(E);

sage: E.torsion_subgroup().gens()

gp: elltors(E)

$$\left(-\frac{18425}{4}, \frac{18421}{8}\right)$$

## Integral points

magma: IntegralPoints(E);

sage: E.integral_points()

None

## Invariants

 magma: Conductor(E);  sage: E.conductor().factor()  gp: ellglobalred(E) Conductor: $$17661$$ = $$3 \cdot 7 \cdot 29^{2}$$ magma: Discriminant(E);  sage: E.discriminant().factor()  gp: E.disc Discriminant: $$988990537772006985111687$$ = $$3^{24} \cdot 7 \cdot 29^{8}$$ magma: jInvariant(E);  sage: E.j_invariant().factor()  gp: E.j j-invariant: $$\frac{8471112631466271697}{1662662681263647}$$ = $$3^{-24} \cdot 7^{-1} \cdot 23^{3} \cdot 29^{-2} \cdot 263^{3} \cdot 337^{3}$$ Endomorphism ring: $$\Z$$ (no Complex Multiplication) Sato-Tate Group: $\mathrm{SU}(2)$

## BSD invariants

 magma: Rank(E);  sage: E.rank() Rank: $$1$$ magma: Regulator(E);  sage: E.regulator() Regulator: $$3.82287302585$$ magma: RealPeriod(E);  sage: E.period_lattice().omega()  gp: E.omega Real period: $$0.0626016844352$$ magma: TamagawaNumbers(E);  sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[i,1],gr[i]] | i<-[1..#gr[,1]]] Tamagawa product: $$96$$  = $$( 2^{3} \cdot 3 )\cdot1\cdot2^{2}$$ magma: Order(TorsionSubgroup(E));  sage: E.torsion_order()  gp: elltors(E) Torsion order: $$2$$ magma: MordellWeilShaInformation(E);  sage: E.sha().an_numerical() Analytic order of Ш: $$1$$ (exact)

## Modular invariants

#### Modular form 17661.2.a.h

magma: ModularForm(E);

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy)/(2*xy+E.a1*xy+E.a3)

$$q + q^{2} + q^{3} - q^{4} - 2q^{5} + q^{6} + q^{7} - 3q^{8} + q^{9} - 2q^{10} - 4q^{11} - q^{12} - 2q^{13} + q^{14} - 2q^{15} - q^{16} - 2q^{17} + q^{18} + 4q^{19} + O(q^{20})$$

 magma: ModularDegree(E);  sage: E.modular_degree() Modular degree: 2580480 $$\Gamma_0(N)$$-optimal: no Manin constant: 1

#### Special L-value

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar/factorial(ar)

$$L'(E,1)$$ ≈ $$5.74363897919$$

## Local data

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

sage: E.local_data()

gp: ellglobalred(E)

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$3$$ $$24$$ $$I_{24}$$ Split multiplicative -1 1 24 24
$$7$$ $$1$$ $$I_{1}$$ Split multiplicative -1 1 1 1
$$29$$ $$4$$ $$I_2^{*}$$ Additive 1 2 8 2

## Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X36o.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^3\Z_2)$ generated by $\left(\begin{array}{rr} 7 & 7 \\ 0 & 7 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 0 & 7 \end{array}\right),\left(\begin{array}{rr} 3 & 0 \\ 0 & 7 \end{array}\right),\left(\begin{array}{rr} 3 & 0 \\ 0 & 3 \end{array}\right)$ and has index 24.

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ except those listed.

prime Image of Galois representation
$$2$$ B

## $p$-adic data

### $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]

$$p$$-adic regulators are not yet computed for curves that are not $$\Gamma_0$$-optimal.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 ordinary split ordinary split ordinary ordinary ordinary ordinary ss add ordinary ordinary ordinary ordinary ordinary 3 6 1 2 1 1 1 1 1,1 - 1 1 1 1 1 2 0 0 0 0 0 0 0 0,0 - 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

## Isogenies

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 2, 4 and 8.
Its isogeny class 17661f consists of 6 curves linked by isogenies of degrees dividing 8.

## Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base-change curve
2 $$\Q(\sqrt{-203})$$ $$\Z/4\Z$$ Not in database
$$\Q(\sqrt{7})$$ $$\Z/2\Z \times \Z/2\Z$$ Not in database
$$\Q(\sqrt{-29})$$ $$\Z/4\Z$$ Not in database
4 $$\Q(\sqrt{-2}, \sqrt{-29})$$ $$\Z/8\Z$$ Not in database
$$\Q(\sqrt{7}, \sqrt{-29})$$ $$\Z/2\Z \times \Z/4\Z$$ Not in database
$$\Q(\sqrt{-14}, \sqrt{-29})$$ $$\Z/8\Z$$ Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.