# Properties

 Label 176610.j8 Conductor 176610 Discriminant -160105642432250976562500 j-invariant $$\frac{226523624554079}{269165039062500}$$ CM no Rank 2 Torsion Structure $$\Z/{2}\Z$$

# Related objects

Show commands for: Magma / Pari/GP / SageMath

## Minimal Weierstrass equation

sage: E = EllipticCurve([1, 1, 0, 1068053, -19246227791]) # or

sage: E = EllipticCurve("176610di5")

gp: E = ellinit([1, 1, 0, 1068053, -19246227791]) \\ or

gp: E = ellinit("176610di5")

magma: E := EllipticCurve([1, 1, 0, 1068053, -19246227791]); // or

magma: E := EllipticCurve("176610di5");

$$y^2 + x y = x^{3} + x^{2} + 1068053 x - 19246227791$$

## Mordell-Weil group structure

$$\Z^2 \times \Z/{2}\Z$$

### Infinite order Mordell-Weil generators and heights

sage: E.gens()

magma: Generators(E);

 $$P$$ = $$\left(22078, -3292289\right)$$ $$\left(\frac{652432}{169}, -\frac{456803933}{2197}\right)$$ $$\hat{h}(P)$$ ≈ 1.8700831819376873 4.6976656532700725

## Torsion generators

sage: E.torsion_subgroup().gens()

gp: elltors(E)

magma: TorsionSubgroup(E);

$$\left(\frac{10187}{4}, -\frac{10187}{8}\right)$$

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

$$\left(2728, 61711\right)$$, $$\left(2728, -64439\right)$$, $$\left(3598, 174811\right)$$, $$\left(3598, -178409\right)$$, $$\left(6328, 487711\right)$$, $$\left(6328, -494039\right)$$, $$\left(10703, 1098461\right)$$, $$\left(10703, -1109164\right)$$, $$\left(22078, 3270211\right)$$, $$\left(22078, -3292289\right)$$, $$\left(28953, 4913336\right)$$, $$\left(28953, -4942289\right)$$, $$\left(49853, 11107811\right)$$, $$\left(49853, -11157664\right)$$, $$\left(69573, 18317936\right)$$, $$\left(69573, -18387509\right)$$, $$\left(115828, 39363961\right)$$, $$\left(115828, -39479789\right)$$

## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor: $$176610$$ = $$2 \cdot 3 \cdot 5 \cdot 7 \cdot 29^{2}$$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $$-160105642432250976562500$$ = $$-1 \cdot 2^{2} \cdot 3^{2} \cdot 5^{16} \cdot 7^{2} \cdot 29^{6}$$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$\frac{226523624554079}{269165039062500}$$ = $$2^{-2} \cdot 3^{-2} \cdot 5^{-16} \cdot 7^{-2} \cdot 47^{3} \cdot 1297^{3}$$ Endomorphism ring: $$\Z$$ (no Complex Multiplication) Sato-Tate Group: $\mathrm{SU}(2)$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Rank: $$2$$ sage: E.regulator()  magma: Regulator(E); Regulator: $$1.49143635691$$ sage: E.period_lattice().omega()  gp: E.omega[1]  magma: RealPeriod(E); Real period: $$0.0476277443106$$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $$512$$  = $$2\cdot2\cdot2^{4}\cdot2\cdot2^{2}$$ sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E)); Torsion order: $$2$$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $$1$$ (rounded)

## Modular invariants

#### Modular form 176610.2.a.j

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

magma: ModularForm(E);

$$q - q^{2} - q^{3} + q^{4} + q^{5} + q^{6} - q^{7} - q^{8} + q^{9} - q^{10} + 4q^{11} - q^{12} - 2q^{13} + q^{14} - q^{15} + q^{16} - 2q^{17} - q^{18} - 4q^{19} + O(q^{20})$$

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 25690112 $$\Gamma_0(N)$$-optimal: no Manin constant: 1

#### Special L-value

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar[2]/factorial(ar[1])

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

$$L^{(2)}(E,1)/2!$$ ≈ $$9.09231993119$$

## Local data

This elliptic curve is not semistable.

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$2$$ $$2$$ $$I_{2}$$ Non-split multiplicative 1 1 2 2
$$3$$ $$2$$ $$I_{2}$$ Non-split multiplicative 1 1 2 2
$$5$$ $$16$$ $$I_{16}$$ Split multiplicative -1 1 16 16
$$7$$ $$2$$ $$I_{2}$$ Non-split multiplicative 1 1 2 2
$$29$$ $$4$$ $$I_0^{*}$$ Additive 1 2 6 0

## Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X207.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^4\Z_2)$ generated by $\left(\begin{array}{rr} 1 & 1 \\ 0 & 3 \end{array}\right),\left(\begin{array}{rr} 3 & 0 \\ 8 & 3 \end{array}\right),\left(\begin{array}{rr} 7 & 14 \\ 0 & 7 \end{array}\right),\left(\begin{array}{rr} 7 & 0 \\ 0 & 7 \end{array}\right),\left(\begin{array}{rr} 7 & 0 \\ 0 & 3 \end{array}\right)$ and has index 48.

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ except those listed.

prime Image of Galois representation
$$2$$ B

## $p$-adic data

### $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]

$$p$$-adic regulators are not yet computed for curves that are not $$\Gamma_0$$-optimal.

No Iwasawa invariant data is available for this curve.

## Isogenies

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 2, 4 and 8.
Its isogeny class 176610.j consists of 8 curves linked by isogenies of degrees dividing 16.

## Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base-change curve
2 $$\Q(\sqrt{-1})$$ $$\Z/2\Z \times \Z/2\Z$$ Not in database
$$\Q(\sqrt{29})$$ $$\Z/4\Z$$ Not in database
$$\Q(\sqrt{-29})$$ $$\Z/4\Z$$ Not in database
4 $$\Q(i, \sqrt{29})$$ $$\Z/2\Z \times \Z/4\Z$$ Not in database
$$\Q(\sqrt{-6}, \sqrt{29})$$ $$\Z/8\Z$$ Not in database
$$\Q(\sqrt{6}, \sqrt{29})$$ $$\Z/8\Z$$ Not in database
$$\Q(\sqrt{-14}, \sqrt{-29})$$ $$\Z/8\Z$$ Not in database
$$\Q(\sqrt{14}, \sqrt{-29})$$ $$\Z/8\Z$$ Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.