Properties

Label 176400pj
Number of curves $4$
Conductor $176400$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("pj1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 176400pj have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1\)
\(7\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 - 2 T + 11 T^{2}\) 1.11.ac
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 - 6 T + 19 T^{2}\) 1.19.ag
\(23\) \( 1 - 8 T + 23 T^{2}\) 1.23.ai
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 176400pj do not have complex multiplication.

Modular form 176400.2.a.pj

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{13} - 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 176400pj

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
176400.kz3 176400pj1 \([0, 0, 0, -400575, 97154750]\) \(20720464/105\) \(36021770820000000\) \([2]\) \(1179648\) \(2.0235\) \(\Gamma_0(N)\)-optimal
176400.kz2 176400pj2 \([0, 0, 0, -621075, -21694750]\) \(19307236/11025\) \(15129143744400000000\) \([2, 2]\) \(2359296\) \(2.3700\)  
176400.kz4 176400pj3 \([0, 0, 0, 2465925, -172957750]\) \(604223422/354375\) \(-972587812140000000000\) \([2]\) \(4718592\) \(2.7166\)  
176400.kz1 176400pj4 \([0, 0, 0, -7236075, -7476799750]\) \(15267472418/36015\) \(98843739130080000000\) \([2]\) \(4718592\) \(2.7166\)