Show commands: SageMath
Rank
The elliptic curves in class 176400pj have rank \(1\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 176400pj do not have complex multiplication.Modular form 176400.2.a.pj
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 176400pj
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 176400.kz3 | 176400pj1 | \([0, 0, 0, -400575, 97154750]\) | \(20720464/105\) | \(36021770820000000\) | \([2]\) | \(1179648\) | \(2.0235\) | \(\Gamma_0(N)\)-optimal |
| 176400.kz2 | 176400pj2 | \([0, 0, 0, -621075, -21694750]\) | \(19307236/11025\) | \(15129143744400000000\) | \([2, 2]\) | \(2359296\) | \(2.3700\) | |
| 176400.kz4 | 176400pj3 | \([0, 0, 0, 2465925, -172957750]\) | \(604223422/354375\) | \(-972587812140000000000\) | \([2]\) | \(4718592\) | \(2.7166\) | |
| 176400.kz1 | 176400pj4 | \([0, 0, 0, -7236075, -7476799750]\) | \(15267472418/36015\) | \(98843739130080000000\) | \([2]\) | \(4718592\) | \(2.7166\) |