Show commands for:
SageMath
sage: E = EllipticCurve("dx1")
sage: E.isogeny_class()
Elliptic curves in class 176400dx
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
176400.cj3 | 176400dx1 | [0, 0, 0, -621075, 118935250] | [2] | 3538944 | \(\Gamma_0(N)\)-optimal |
176400.cj2 | 176400dx2 | [0, 0, 0, -4149075, -3165632750] | [2, 2] | 7077888 | |
176400.cj4 | 176400dx3 | [0, 0, 0, 1142925, -10685564750] | [2] | 14155776 | |
176400.cj1 | 176400dx4 | [0, 0, 0, -65889075, -205858052750] | [2] | 14155776 |
Rank
sage: E.rank()
The elliptic curves in class 176400dx have rank \(0\).
Complex multiplication
The elliptic curves in class 176400dx do not have complex multiplication.Modular form 176400.2.a.dx
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.