Minimal Weierstrass equation
\(y^2=x^3-444675x-108130750\)
Mordell-Weil group structure
\(\Z^2 \times \Z/{2}\Z\)
Infinite order Mordell-Weil generators and heights
\(P\) | = | \( \left(-385, 2450\right) \) | \( \left(-335, 1800\right) \) |
\(\hat{h}(P)\) | ≈ | $0.87314236290732516870963476100$ | $1.2170022107845381159978219080$ |
Torsion generators
\( \left(-455, 0\right) \)
Integral points
\( \left(-455, 0\right) \), \((-434,\pm 1764)\), \((-385,\pm 2450)\), \((-335,\pm 1800)\), \((-311,\pm 288)\), \((770,\pm 2450)\), \((889,\pm 14112)\), \((1015,\pm 22050)\), \((1570,\pm 55350)\), \((2065,\pm 88200)\), \((4615,\pm 310050)\), \((7945,\pm 705600)\), \((8215,\pm 742050)\), \((80465,\pm 22824200)\)
Invariants
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
|
|||
Conductor: | \( 176400 \) | = | \(2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2}\) |
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
|
|||
Discriminant: | \(576348333120000000 \) | = | \(2^{12} \cdot 3^{7} \cdot 5^{7} \cdot 7^{7} \) |
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
|
|||
j-invariant: | \( \frac{1771561}{105} \) | = | \(3^{-1} \cdot 5^{-1} \cdot 7^{-1} \cdot 11^{6}\) |
Endomorphism ring: | \(\Z\) | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
Sato-Tate group: | $\mathrm{SU}(2)$ |
BSD invariants
sage: E.rank()
magma: Rank(E);
|
|||
Analytic rank: | \(2\) | ||
sage: E.regulator()
magma: Regulator(E);
|
|||
Regulator: | \(1.0580152056518590324213281663\) | ||
sage: E.period_lattice().omega()
gp: E.omega[1]
magma: RealPeriod(E);
|
|||
Real period: | \(0.18556444012979974966992049664\) | ||
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
|
|||
Tamagawa product: | \( 256 \) = \( 2^{2}\cdot2^{2}\cdot2^{2}\cdot2^{2} \) | ||
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
|
|||
Torsion order: | \(2\) | ||
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
|||
Analytic order of Ш: | \(1\) (rounded) |
Modular invariants
Modular form 176400.2.a.id
For more coefficients, see the Downloads section to the right.
sage: E.modular_degree()
magma: ModularDegree(E);
|
|||
Modular degree: | 2359296 | ||
\( \Gamma_0(N) \)-optimal: | yes | ||
Manin constant: | 1 |
Special L-value
\( L^{(2)}(E,1)/2! \) ≈ \( 12.565119954278538569650327106952385856 \)
Local data
This elliptic curve is not semistable. There are 4 primes of bad reduction:
prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(N\)) | ord(\(\Delta\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|
\(2\) | \(4\) | \(I_4^{*}\) | Additive | -1 | 4 | 12 | 0 |
\(3\) | \(4\) | \(I_1^{*}\) | Additive | -1 | 2 | 7 | 1 |
\(5\) | \(4\) | \(I_1^{*}\) | Additive | 1 | 2 | 7 | 1 |
\(7\) | \(4\) | \(I_1^{*}\) | Additive | -1 | 2 | 7 | 1 |
Galois representations
The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X13b.
This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^3\Z_2)$ generated by $\left(\begin{array}{rr} 1 & 0 \\ 0 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 4 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 0 & 3 \end{array}\right),\left(\begin{array}{rr} 3 & 0 \\ 4 & 1 \end{array}\right)$ and has index 12.
The mod \( p \) Galois representation has maximal image \(\GL(2,\F_p)\) for all primes \( p \) except those listed.
prime | Image of Galois representation |
---|---|
\(2\) | B |
$p$-adic data
$p$-adic regulators
\(p\)-adic regulators are not yet computed for curves that are not \(\Gamma_0\)-optimal.
No Iwasawa invariant data is available for this curve.
Isogenies
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2 and 4.
Its isogeny class 176400.id
consists of 4 curves linked by isogenies of
degrees dividing 4.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{105}) \) | \(\Z/2\Z \times \Z/2\Z\) | Not in database |
$2$ | \(\Q(\sqrt{-21}) \) | \(\Z/4\Z\) | Not in database |
$2$ | \(\Q(\sqrt{-5}) \) | \(\Z/4\Z\) | Not in database |
$4$ | \(\Q(\sqrt{-5}, \sqrt{-21})\) | \(\Z/2\Z \times \Z/4\Z\) | Not in database |
$8$ | 8.4.21441530250000.5 | \(\Z/2\Z \times \Z/4\Z\) | Not in database |
$8$ | 8.0.777924000000.11 | \(\Z/2\Z \times \Z/8\Z\) | Not in database |
$8$ | 8.0.13722579360000.55 | \(\Z/8\Z\) | Not in database |
$8$ | Deg 8 | \(\Z/6\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/4\Z \times \Z/4\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/2\Z \times \Z/8\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/2\Z \times \Z/6\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/12\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/12\Z\) | Not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.