Properties

Label 17600.cp
Number of curves 4
Conductor 17600
CM no
Rank 0
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("17600.cp1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 17600.cp

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
17600.cp1 17600bv4 [0, -1, 0, -710033, 230521937] [2] 165888  
17600.cp2 17600bv3 [0, -1, 0, -44533, 3586437] [2] 82944  
17600.cp3 17600bv2 [0, -1, 0, -10033, 221937] [2] 55296  
17600.cp4 17600bv1 [0, -1, 0, -4533, -113563] [2] 27648 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 17600.cp have rank \(0\).

Modular form 17600.2.a.cp

sage: E.q_eigenform(10)
 
\( q + 2q^{3} - 4q^{7} + q^{9} - q^{11} - 4q^{13} - 4q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.