Show commands for:
SageMath
sage: E = EllipticCurve("bu1")
sage: E.isogeny_class()
Elliptic curves in class 17424bu
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
17424.s2 | 17424bu1 | [0, 0, 0, -4323, -109406] | [] | 9216 | \(\Gamma_0(N)\)-optimal |
17424.s1 | 17424bu2 | [0, 0, 0, -43923, 13850386] | [] | 101376 |
Rank
sage: E.rank()
The elliptic curves in class 17424bu have rank \(0\).
Complex multiplication
The elliptic curves in class 17424bu do not have complex multiplication.Modular form 17424.2.a.bu
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 11 \\ 11 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.