Show commands:
SageMath
E = EllipticCurve("e1")
E.isogeny_class()
Elliptic curves in class 174.e
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
174.e1 | 174b2 | \([1, 0, 0, -6511, -203353]\) | \(-30526075007211889/103499257854\) | \(-103499257854\) | \([]\) | \(196\) | \(0.97765\) | |
174.e2 | 174b1 | \([1, 0, 0, -1, 137]\) | \(-117649/8118144\) | \(-8118144\) | \([7]\) | \(28\) | \(0.0046914\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 174.e have rank \(0\).
Complex multiplication
The elliptic curves in class 174.e do not have complex multiplication.Modular form 174.2.a.e
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 7 \\ 7 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.