Show commands for: Magma / SageMath / Pari/GP

## Minimal Weierstrass equation

magma: E := EllipticCurve([1, 0, 1, -7705, 1226492]); // or

magma: E := EllipticCurve("174a1");

sage: E = EllipticCurve([1, 0, 1, -7705, 1226492]) # or

sage: E = EllipticCurve("174a1")

gp: E = ellinit([1, 0, 1, -7705, 1226492]) \\ or

gp: E = ellinit("174a1")

$$y^2 + x y + y = x^{3} - 7705 x + 1226492$$

## Mordell-Weil group structure

$$\Z/{3}\Z$$

## Torsion generators

magma: TorsionSubgroup(E);

sage: E.torsion_subgroup().gens()

gp: elltors(E)

$$\left(4, 1091\right)$$

## Integral points

magma: IntegralPoints(E);

sage: E.integral_points()

$$\left(4, 1091\right)$$, $$\left(4, -1096\right)$$

## Invariants

 magma: Conductor(E);  sage: E.conductor().factor()  gp: ellglobalred(E) Conductor: $$174$$ = $$2 \cdot 3 \cdot 29$$ magma: Discriminant(E);  sage: E.discriminant().factor()  gp: E.disc Discriminant: $$-621261297432576$$ = $$-1 \cdot 2^{11} \cdot 3^{21} \cdot 29$$ magma: jInvariant(E);  sage: E.j_invariant().factor()  gp: E.j j-invariant: $$-\frac{50577879066661513}{621261297432576}$$ = $$-1 \cdot 2^{-11} \cdot 3^{-21} \cdot 7^{3} \cdot 23^{3} \cdot 29^{-1} \cdot 2297^{3}$$ Endomorphism ring: $$\Z$$ (no Complex Multiplication) Sato-Tate Group: $\mathrm{SU}(2)$

## BSD invariants

 magma: Rank(E);  sage: E.rank() Rank: $$0$$ magma: Regulator(E);  sage: E.regulator() Regulator: $$1$$ magma: RealPeriod(E);  sage: E.period_lattice().omega()  gp: E.omega Real period: $$0.436294267433$$ magma: TamagawaNumbers(E);  sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[i,1],gr[i]] | i<-[1..#gr[,1]]] Tamagawa product: $$21$$  = $$1\cdot( 3 \cdot 7 )\cdot1$$ magma: Order(TorsionSubgroup(E));  sage: E.torsion_order()  gp: elltors(E) Torsion order: $$3$$ magma: MordellWeilShaInformation(E);  sage: E.sha().an_numerical() Analytic order of Ш: $$1$$ (exact)

## Modular invariants

#### Modular form174.2.a.b

magma: ModularForm(E);

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy)/(2*xy+E.a1*xy+E.a3)

$$q - q^{2} + q^{3} + q^{4} - 3q^{5} - q^{6} + 5q^{7} - q^{8} + q^{9} + 3q^{10} + 6q^{11} + q^{12} - 4q^{13} - 5q^{14} - 3q^{15} + q^{16} + 3q^{17} - q^{18} - q^{19} + O(q^{20})$$

 magma: ModularDegree(E);  sage: E.modular_degree() Modular degree: 1540 $$\Gamma_0(N)$$-optimal: yes Manin constant: 1

#### Special L-value

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar/factorial(ar)

$$L(E,1)$$ ≈ $$1.01801995734$$

## Local data

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

sage: E.local_data()

gp: ellglobalred(E)

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$2$$ $$1$$ $$I_{11}$$ Non-split multiplicative 1 1 11 11
$$3$$ $$21$$ $$I_{21}$$ Split multiplicative -1 1 21 21
$$29$$ $$1$$ $$I_{1}$$ Non-split multiplicative 1 1 1 1

## Galois representations

The 2-adic representation attached to this elliptic curve is surjective.

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ except those listed.

prime Image of Galois representation
$$3$$ B.1.1

## $p$-adic data

### $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]

All $$p$$-adic regulators are identically $$1$$ since the rank is $$0$$.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 29 nonsplit split ordinary ordinary nonsplit 6 1 0 2 0 0 0 0 0 0

All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 11$ of good reduction are zero.

## Isogenies

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 3.
Its isogeny class 174.b consists of 2 curves linked by isogenies of degree 3.

## Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{3}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base-change curve
3 3.1.696.1 $$\Z/6\Z$$ Not in database
6 6.0.337153536.1 $$\Z/2\Z \times \Z/6\Z$$ Not in database
6.0.305545392.1 $$\Z/3\Z \times \Z/3\Z$$ Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.