Properties

Label 1734.j3
Conductor $1734$
Discriminant $-3.031\times 10^{18}$
j-invariant \( -\frac{491411892194497}{125563633938} \)
CM no
Rank $0$
Torsion structure \(\Z/{2}\Z\)

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Minimal Weierstrass equation

sage: E = EllipticCurve([1, 1, 1, -475122, -151542927])
 
gp: E = ellinit([1, 1, 1, -475122, -151542927])
 
magma: E := EllipticCurve([1, 1, 1, -475122, -151542927]);
 

\(y^2+xy+y=x^3+x^2-475122x-151542927\)  Toggle raw display

Mordell-Weil group structure

$\Z/{2}\Z$

Torsion generators

sage: E.torsion_subgroup().gens()
 
gp: elltors(E)
 
magma: TorsionSubgroup(E);
 

\( \left(\frac{3251}{4}, -\frac{3255}{8}\right) \)  Toggle raw display

Integral points

sage: E.integral_points()
 
magma: IntegralPoints(E);
 

None

Invariants

sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor: \( 1734 \)  =  $2 \cdot 3 \cdot 17^{2}$
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant: $-3030800878069216722 $  =  $-1 \cdot 2 \cdot 3^{2} \cdot 17^{14} $
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
j-invariant: \( -\frac{491411892194497}{125563633938} \)  =  $-1 \cdot 2^{-1} \cdot 3^{-2} \cdot 17^{-8} \cdot 23^{3} \cdot 47^{3} \cdot 73^{3}$
Endomorphism ring: $\Z$
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
Sato-Tate group: $\mathrm{SU}(2)$
Faltings height: $2.2636849576695802943625943656\dots$
Stable Faltings height: $0.84707828564147225423782705666\dots$

BSD invariants

sage: E.rank()
 
magma: Rank(E);
 
Analytic rank: $0$
sage: E.regulator()
 
magma: Regulator(E);
 
Regulator: $1$
sage: E.period_lattice().omega()
 
gp: E.omega[1]
 
magma: RealPeriod(E);
 
Real period: $0.089718652767524935890435144755\dots$
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
Tamagawa product: $ 8 $  = $ 1\cdot2\cdot2^{2} $
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
Torsion order: $2$
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 
Analytic order of Ш: $16$ = $4^2$ (exact)
sage: r = E.rank();
 
sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: ar = ellanalyticrank(E);
 
gp: ar[2]/factorial(ar[1])
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Special value: $ L(E,1) $ ≈ $ 2.8709968885607979484939246321705581062 $

Modular invariants

Modular form   1734.2.a.j

sage: E.q_eigenform(20)
 
gp: xy = elltaniyama(E);
 
gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)
 
magma: ModularForm(E);
 

\( q + q^{2} - q^{3} + q^{4} + 2 q^{5} - q^{6} + q^{8} + q^{9} + 2 q^{10} + 4 q^{11} - q^{12} - 2 q^{13} - 2 q^{15} + q^{16} + q^{18} + 4 q^{19} + O(q^{20}) \)  Toggle raw display

For more coefficients, see the Downloads section to the right.

sage: E.modular_degree()
 
magma: ModularDegree(E);
 
Modular degree: 36864
$ \Gamma_0(N) $-optimal: no
Manin constant: 1

Local data

This elliptic curve is not semistable. There are 3 primes of bad reduction:

sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
prime Tamagawa number Kodaira symbol Reduction type Root number ord($N$) ord($\Delta$) ord$(j)_{-}$
$2$ $1$ $I_{1}$ Split multiplicative -1 1 1 1
$3$ $2$ $I_{2}$ Non-split multiplicative 1 1 2 2
$17$ $4$ $I_{8}^{*}$ Additive 1 2 14 8

Galois representations

sage: rho = E.galois_representation();
 
sage: [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$2$ 2B 16.96.0.275

$p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]
 

All $p$-adic regulators are identically $1$ since the rank is $0$.

Iwasawa invariants

$p$ 2 3 17
Reduction type split nonsplit add
$\lambda$-invariant(s) 5 0 -
$\mu$-invariant(s) 3 0 -

All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 3$ of good reduction are zero.

An entry - indicates that the invariants are not computed because the reduction is additive.

Isogenies

This curve has non-trivial cyclic isogenies of degree $d$ for $d=$ 2, 4 and 8.
Its isogeny class 1734.j consists of 6 curves linked by isogenies of degrees dividing 8.

Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base change curve
$2$ \(\Q(\sqrt{-2}) \) \(\Z/2\Z \times \Z/2\Z\) Not in database
$2$ \(\Q(\sqrt{34}) \) \(\Z/4\Z\) Not in database
$2$ \(\Q(\sqrt{-17}) \) \(\Z/4\Z\) Not in database
$4$ \(\Q(\sqrt{-2}, \sqrt{-17})\) \(\Z/2\Z \times \Z/4\Z\) Not in database
$4$ \(\Q(i, \sqrt{17})\) \(\Z/8\Z\) Not in database
$4$ \(\Q(\sqrt{2}, \sqrt{-17})\) \(\Z/8\Z\) Not in database
$8$ 8.0.28375309615104.47 \(\Z/2\Z \times \Z/4\Z\) Not in database
$8$ 8.4.28375309615104.5 \(\Z/8\Z\) Not in database
$8$ 8.0.5473632256.1 \(\Z/2\Z \times \Z/8\Z\) Not in database
$8$ 8.0.21894529024.1 \(\Z/16\Z\) Not in database
$8$ 8.2.68414366970288.5 \(\Z/6\Z\) Not in database
$16$ Deg 16 \(\Z/4\Z \times \Z/8\Z\) Not in database
$16$ Deg 16 \(\Z/2\Z \times \Z/8\Z\) Not in database
$16$ Deg 16 \(\Z/16\Z\) Not in database
$16$ Deg 16 \(\Z/2\Z \times \Z/16\Z\) Not in database
$16$ Deg 16 \(\Z/2\Z \times \Z/16\Z\) Not in database
$16$ Deg 16 \(\Z/2\Z \times \Z/6\Z\) Not in database
$16$ Deg 16 \(\Z/12\Z\) Not in database
$16$ Deg 16 \(\Z/12\Z\) Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.