Properties

Label 17328.u
Number of curves $4$
Conductor $17328$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("u1")
 
E.isogeny_class()
 

Elliptic curves in class 17328.u

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
17328.u1 17328bg3 \([0, 1, 0, -586384, 172633556]\) \(115714886617/1539\) \(296565190078464\) \([4]\) \(138240\) \(1.9204\)  
17328.u2 17328bg2 \([0, 1, 0, -37664, 2530356]\) \(30664297/3249\) \(626082067943424\) \([2, 2]\) \(69120\) \(1.5738\)  
17328.u3 17328bg1 \([0, 1, 0, -8784, -276780]\) \(389017/57\) \(10983895928832\) \([2]\) \(34560\) \(1.2272\) \(\Gamma_0(N)\)-optimal
17328.u4 17328bg4 \([0, 1, 0, 48976, 12545940]\) \(67419143/390963\) \(-75338542175858688\) \([2]\) \(138240\) \(1.9204\)  

Rank

sage: E.rank()
 

The elliptic curves in class 17328.u have rank \(0\).

Complex multiplication

The elliptic curves in class 17328.u do not have complex multiplication.

Modular form 17328.2.a.u

sage: E.q_eigenform(10)
 
\(q + q^{3} - 2 q^{5} + q^{9} - 6 q^{13} - 2 q^{15} - 6 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.