Show commands for:
SageMath
sage: E = EllipticCurve("k1")
sage: E.isogeny_class()
Elliptic curves in class 17325k
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
17325.d2 | 17325k1 | [0, 0, 1, -2011575, -1285997594] | [] | 1152000 | \(\Gamma_0(N)\)-optimal |
17325.d1 | 17325k2 | [0, 0, 1, -6027825, 107691166156] | [] | 5760000 |
Rank
sage: E.rank()
The elliptic curves in class 17325k have rank \(0\).
Complex multiplication
The elliptic curves in class 17325k do not have complex multiplication.Modular form 17325.2.a.k
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 5 \\ 5 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.