Properties

Label 17325.d
Number of curves $2$
Conductor $17325$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("d1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 17325.d

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
17325.d1 17325k2 [0, 0, 1, -6027825, 107691166156] [] 5760000  
17325.d2 17325k1 [0, 0, 1, -2011575, -1285997594] [] 1152000 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 17325.d have rank \(0\).

Complex multiplication

The elliptic curves in class 17325.d do not have complex multiplication.

Modular form 17325.2.a.d

sage: E.q_eigenform(10)
 
\( q - 2q^{2} + 2q^{4} - q^{7} - q^{11} + 6q^{13} + 2q^{14} - 4q^{16} - 7q^{17} - 5q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 5 \\ 5 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.