Properties

Label 1728.n
Number of curves $4$
Conductor $1728$
CM \(\Q(\sqrt{-3}) \)
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("n1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 1728.n have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(7\) \( 1 + T + 7 T^{2}\) 1.7.b
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 + 5 T + 13 T^{2}\) 1.13.f
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 - 7 T + 19 T^{2}\) 1.19.ah
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

Each elliptic curve in class 1728.n has complex multiplication by an order in the imaginary quadratic field \(\Q(\sqrt{-3}) \).

Modular form 1728.2.a.n

Copy content sage:E.q_eigenform(10)
 
\(q - q^{7} - 5 q^{13} + 7 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 27 & 3 & 9 \\ 27 & 1 & 9 & 3 \\ 3 & 9 & 1 & 3 \\ 9 & 3 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 1728.n

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality CM discriminant
1728.n1 1728a4 \([0, 0, 0, -1080, -13662]\) \(-12288000\) \(-11337408\) \([]\) \(432\) \(0.39872\)   \(-27\)
1728.n2 1728a3 \([0, 0, 0, -120, 506]\) \(-12288000\) \(-15552\) \([]\) \(144\) \(-0.15058\)   \(-27\)
1728.n3 1728a2 \([0, 0, 0, 0, -54]\) \(0\) \(-1259712\) \([]\) \(144\) \(-0.15058\)   \(-3\)
1728.n4 1728a1 \([0, 0, 0, 0, 2]\) \(0\) \(-1728\) \([]\) \(48\) \(-0.69989\) \(\Gamma_0(N)\)-optimal \(-3\)