Show commands: SageMath
Rank
The elliptic curves in class 1728.n have rank \(1\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||||||||
Complex multiplication
Each elliptic curve in class 1728.n has complex multiplication by an order in the imaginary quadratic field \(\Q(\sqrt{-3}) \).Modular form 1728.2.a.n
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 27 & 3 & 9 \\ 27 & 1 & 9 & 3 \\ 3 & 9 & 1 & 3 \\ 9 & 3 & 3 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 1728.n
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality | CM discriminant |
|---|---|---|---|---|---|---|---|---|---|
| 1728.n1 | 1728a4 | \([0, 0, 0, -1080, -13662]\) | \(-12288000\) | \(-11337408\) | \([]\) | \(432\) | \(0.39872\) | \(-27\) | |
| 1728.n2 | 1728a3 | \([0, 0, 0, -120, 506]\) | \(-12288000\) | \(-15552\) | \([]\) | \(144\) | \(-0.15058\) | \(-27\) | |
| 1728.n3 | 1728a2 | \([0, 0, 0, 0, -54]\) | \(0\) | \(-1259712\) | \([]\) | \(144\) | \(-0.15058\) | \(-3\) | |
| 1728.n4 | 1728a1 | \([0, 0, 0, 0, 2]\) | \(0\) | \(-1728\) | \([]\) | \(48\) | \(-0.69989\) | \(\Gamma_0(N)\)-optimal | \(-3\) |