# Properties

 Label 172480.q Number of curves 4 Conductor 172480 CM no Rank 1 Graph

# Related objects

Show commands for: SageMath
sage: E = EllipticCurve("172480.q1")

sage: E.isogeny_class()

## Elliptic curves in class 172480.q

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
172480.q1 172480ep4 [0, 1, 0, -81899841, 277169852959] [2] 31850496
172480.q2 172480ep2 [0, 1, 0, -11214401, -14330140385] [2] 10616832
172480.q3 172480ep1 [0, 1, 0, -175681, -551610081] [2] 5308416 $$\Gamma_0(N)$$-optimal
172480.q4 172480ep3 [0, 1, 0, 1580479, 14857991455] [2] 15925248

## Rank

sage: E.rank()

The elliptic curves in class 172480.q have rank $$1$$.

## Modular form 172480.2.a.q

sage: E.q_eigenform(10)

$$q - 2q^{3} - q^{5} + q^{9} + q^{11} - 4q^{13} + 2q^{15} - 4q^{19} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rrrr} 1 & 3 & 6 & 2 \\ 3 & 1 & 2 & 6 \\ 6 & 2 & 1 & 3 \\ 2 & 6 & 3 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels.