Properties

Label 1710.n
Number of curves $2$
Conductor $1710$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("n1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 1710.n

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1710.n1 1710p2 \([1, -1, 1, -3578, -81363]\) \(6947097508441/10687500\) \(7791187500\) \([2]\) \(1536\) \(0.79737\)  
1710.n2 1710p1 \([1, -1, 1, -158, -2019]\) \(-594823321/2166000\) \(-1579014000\) \([2]\) \(768\) \(0.45080\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 1710.n have rank \(0\).

Complex multiplication

The elliptic curves in class 1710.n do not have complex multiplication.

Modular form 1710.2.a.n

sage: E.q_eigenform(10)
 
\(q + q^{2} + q^{4} - q^{5} - 2 q^{7} + q^{8} - q^{10} + 2 q^{11} - 2 q^{14} + q^{16} + 2 q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.