Properties

Label 1710.m
Number of curves $2$
Conductor $1710$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("m1")
 
E.isogeny_class()
 

Elliptic curves in class 1710.m

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1710.m1 1710l2 \([1, -1, 1, -3593, -45143]\) \(260549802603/104256800\) \(2052086594400\) \([2]\) \(3840\) \(1.0606\)  
1710.m2 1710l1 \([1, -1, 1, 727, -5399]\) \(2161700757/1848320\) \(-36380482560\) \([2]\) \(1920\) \(0.71404\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 1710.m have rank \(1\).

Complex multiplication

The elliptic curves in class 1710.m do not have complex multiplication.

Modular form 1710.2.a.m

sage: E.q_eigenform(10)
 
\(q + q^{2} + q^{4} - q^{5} - 2 q^{7} + q^{8} - q^{10} + 2 q^{11} - 4 q^{13} - 2 q^{14} + q^{16} - 6 q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.