Properties

Label 1710.l4
Conductor $1710$
Discriminant $-159563520$
j-invariant \( \frac{214921799}{218880} \)
CM no
Rank $1$
Torsion structure \(\Z/{2}\Z\)

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Minimal Weierstrass equation

sage: E = EllipticCurve([1, -1, 1, 112, 371])
 
gp: E = ellinit([1, -1, 1, 112, 371])
 
magma: E := EllipticCurve([1, -1, 1, 112, 371]);
 

\(y^2+xy+y=x^3-x^2+112x+371\)  Toggle raw display

Mordell-Weil group structure

$\Z\times \Z/{2}\Z$

Infinite order Mordell-Weil generator and height

sage: E.gens()
 
magma: Generators(E);
 

$P$ =  \(\left(3, 25\right)\)  Toggle raw display
$\hat{h}(P)$ ≈  $0.38369896340315817459404689353$

Torsion generators

sage: E.torsion_subgroup().gens()
 
gp: elltors(E)
 
magma: TorsionSubgroup(E);
 

\( \left(-3, 1\right) \)  Toggle raw display

Integral points

sage: E.integral_points()
 
magma: IntegralPoints(E);
 

\( \left(-3, 1\right) \), \( \left(1, 21\right) \), \( \left(1, -23\right) \), \( \left(3, 25\right) \), \( \left(3, -29\right) \), \( \left(21, 97\right) \), \( \left(21, -119\right) \), \( \left(33, 181\right) \), \( \left(33, -215\right) \), \( \left(597, 14281\right) \), \( \left(597, -14879\right) \)  Toggle raw display

Invariants

sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor: \( 1710 \)  =  $2 \cdot 3^{2} \cdot 5 \cdot 19$
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant: $-159563520 $  =  $-1 \cdot 2^{8} \cdot 3^{8} \cdot 5 \cdot 19 $
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
j-invariant: \( \frac{214921799}{218880} \)  =  $2^{-8} \cdot 3^{-2} \cdot 5^{-1} \cdot 19^{-1} \cdot 599^{3}$
Endomorphism ring: $\Z$
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
Sato-Tate group: $\mathrm{SU}(2)$
Faltings height: $0.26084644573356114324462324571\dots$
Stable Faltings height: $-0.28845969860049370245299937275\dots$

BSD invariants

sage: E.rank()
 
magma: Rank(E);
 
Analytic rank: $1$
sage: E.regulator()
 
magma: Regulator(E);
 
Regulator: $0.38369896340315817459404689353\dots$
sage: E.period_lattice().omega()
 
gp: E.omega[1]
 
magma: RealPeriod(E);
 
Real period: $1.2008857915947485369109191742\dots$
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
Tamagawa product: $ 32 $  = $ 2^{3}\cdot2^{2}\cdot1\cdot1 $
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
Torsion order: $2$
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 
Analytic order of Ш: $1$ (exact)
sage: r = E.rank();
 
sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: ar = ellanalyticrank(E);
 
gp: ar[2]/factorial(ar[1])
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Special value: $ L'(E,1) $ ≈ $ 3.6862290672038884279500220211416640332 $

Modular invariants

Modular form   1710.2.a.l

sage: E.q_eigenform(20)
 
gp: xy = elltaniyama(E);
 
gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)
 
magma: ModularForm(E);
 

\( q + q^{2} + q^{4} - q^{5} - 4 q^{7} + q^{8} - q^{10} + 4 q^{11} - 6 q^{13} - 4 q^{14} + q^{16} + 6 q^{17} - q^{19} + O(q^{20}) \)  Toggle raw display

For more coefficients, see the Downloads section to the right.

sage: E.modular_degree()
 
magma: ModularDegree(E);
 
Modular degree: 1024
$ \Gamma_0(N) $-optimal: yes
Manin constant: 1

Local data

This elliptic curve is not semistable. There are 4 primes of bad reduction:

sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
prime Tamagawa number Kodaira symbol Reduction type Root number ord($N$) ord($\Delta$) ord$(j)_{-}$
$2$ $8$ $I_{8}$ Split multiplicative -1 1 8 8
$3$ $4$ $I_{2}^{*}$ Additive -1 2 8 2
$5$ $1$ $I_{1}$ Non-split multiplicative 1 1 1 1
$19$ $1$ $I_{1}$ Non-split multiplicative 1 1 1 1

Galois representations

sage: rho = E.galois_representation();
 
sage: [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$2$ 2B 4.6.0.1

$p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]
 

Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.

Iwasawa invariants

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type split add nonsplit ordinary ordinary ordinary ordinary nonsplit ordinary ordinary ordinary ordinary ordinary ordinary ordinary
$\lambda$-invariant(s) 2 - 1 1 1 1 1 1 1 1 1 1 1 1 1
$\mu$-invariant(s) 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

Isogenies

This curve has non-trivial cyclic isogenies of degree $d$ for $d=$ 2 and 4.
Its isogeny class 1710.l consists of 4 curves linked by isogenies of degrees dividing 4.

Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base change curve
$2$ \(\Q(\sqrt{-95}) \) \(\Z/2\Z \times \Z/2\Z\) Not in database
$2$ \(\Q(\sqrt{57}) \) \(\Z/4\Z\) Not in database
$2$ \(\Q(\sqrt{-15}) \) \(\Z/4\Z\) Not in database
$4$ \(\Q(\sqrt{-15}, \sqrt{57})\) \(\Z/2\Z \times \Z/4\Z\) Not in database
$8$ 8.0.15242865444000000.1 \(\Z/2\Z \times \Z/4\Z\) Not in database
$8$ 8.4.24388584710400.3 \(\Z/8\Z\) Not in database
$8$ 8.0.456890625.1 \(\Z/8\Z\) Not in database
$8$ 8.2.230859741870000.6 \(\Z/6\Z\) Not in database
$16$ Deg 16 \(\Z/4\Z \times \Z/4\Z\) Not in database
$16$ Deg 16 \(\Z/2\Z \times \Z/8\Z\) Not in database
$16$ Deg 16 \(\Z/2\Z \times \Z/8\Z\) Not in database
$16$ Deg 16 \(\Z/2\Z \times \Z/6\Z\) Not in database
$16$ Deg 16 \(\Z/12\Z\) Not in database
$16$ Deg 16 \(\Z/12\Z\) Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.