Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+y=x^3-6924x+221760\)
|
(homogenize, simplify) |
\(y^2z+yz^2=x^3-6924xz^2+221760z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-110784x+14192656\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{3}\Z\)
Infinite order Mordell-Weil generator and height
$P$ | = |
\(\left(62, 175\right)\)
|
$\hat{h}(P)$ | ≈ | $2.0337018194312539087610363840$ |
Torsion generators
\( \left(48, 0\right) \)
Integral points
\( \left(48, 0\right) \), \( \left(48, -1\right) \), \( \left(62, 175\right) \), \( \left(62, -176\right) \)
Invariants
Conductor: | \( 171 \) | = | $3^{2} \cdot 19$ | comment: Conductor
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
oscar: conductor(E)
|
Discriminant: | $-13851 $ | = | $-1 \cdot 3^{6} \cdot 19 $ | comment: Discriminant
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
oscar: discriminant(E)
|
j-invariant: | \( -\frac{50357871050752}{19} \) | = | $-1 \cdot 2^{18} \cdot 19^{-1} \cdot 577^{3}$ | comment: j-invariant
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
oscar: j_invariant(E)
|
Endomorphism ring: | $\Z$ | |||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | sage: E.has_cm()
magma: HasComplexMultiplication(E);
| |
Sato-Tate group: | $\mathrm{SU}(2)$ | |||
Faltings height: | $0.58274530132537264921771750205\dots$ | gp: ellheight(E)
magma: FaltingsHeight(E);
oscar: faltings_height(E)
|
||
Stable Faltings height: | $0.033439156991317803520094883589\dots$ | magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
|
BSD invariants
Analytic rank: | $1$ | sage: E.analytic_rank()
gp: ellanalyticrank(E)
magma: AnalyticRank(E);
|
Regulator: | $2.0337018194312539087610363840\dots$ | comment: Regulator
sage: E.regulator()
G = E.gen \\ if available
magma: Regulator(E);
|
Real period: | $2.3827779033284052041975492616\dots$ | comment: Real Period
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
|
Tamagawa product: | $ 2 $ = $ 2\cdot1 $ | comment: Tamagawa numbers
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
|
Torsion order: | $3$ | comment: Torsion order
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
|
Analytic order of Ш: | $1$ (exact) | comment: Order of Sha
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
Special value: | $ L'(E,1) $ ≈ $ 1.0768577238443480228145386666 $ | comment: Special L-value
r = E.rank();
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
|
BSD formula
$\displaystyle 1.076857724 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 2.382778 \cdot 2.033702 \cdot 2}{3^2} \approx 1.076857724$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 72 | comment: Modular degree
sage: E.modular_degree()
gp: ellmoddegree(E)
magma: ModularDegree(E);
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 | comment: Manin constant
magma: ManinConstant(E);
|
Local data
This elliptic curve is not semistable. There are 2 primes of bad reduction:
prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord($N$) | ord($\Delta$) | ord$(j)_{-}$ |
---|---|---|---|---|---|---|---|
$3$ | $2$ | $I_0^{*}$ | Additive | -1 | 2 | 6 | 0 |
$19$ | $1$ | $I_{1}$ | Split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$3$ | 3B.1.1 | 27.72.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1026 = 2 \cdot 3^{3} \cdot 19 \), index $1296$, genus $43$, and generators
$\left(\begin{array}{rr} 31 & 36 \\ 334 & 421 \end{array}\right),\left(\begin{array}{rr} 89 & 951 \\ 399 & 934 \end{array}\right),\left(\begin{array}{rr} 1 & 54 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 973 & 54 \\ 972 & 55 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 54 & 1 \end{array}\right),\left(\begin{array}{rr} 28 & 27 \\ 729 & 703 \end{array}\right),\left(\begin{array}{rr} 70 & 45 \\ 385 & 472 \end{array}\right)$.
The torsion field $K:=\Q(E[1026])$ is a degree-$179508960$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1026\Z)$.
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3 and 9.
Its isogeny class 171.b
consists of 3 curves linked by isogenies of
degrees dividing 9.
Twists
The minimal quadratic twist of this elliptic curve is 19.a1, its twist by $-3$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{3}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$3$ | 3.1.76.1 | \(\Z/6\Z\) | Not in database |
$3$ | 3.3.29241.2 | \(\Z/9\Z\) | Not in database |
$6$ | 6.0.109744.2 | \(\Z/2\Z \oplus \Z/6\Z\) | Not in database |
$6$ | 6.0.3518667.2 | \(\Z/3\Z \oplus \Z/3\Z\) | Not in database |
$6$ | 6.0.7105563.2 | \(\Z/9\Z\) | Not in database |
$9$ | 9.3.30402565814137536.8 | \(\Z/18\Z\) | Not in database |
$12$ | deg 12 | \(\Z/12\Z\) | Not in database |
$18$ | 18.0.16877848680315122776257224907.2 | \(\Z/3\Z \oplus \Z/9\Z\) | Not in database |
$18$ | 18.0.64417171850299425397321728.2 | \(\Z/3\Z \oplus \Z/6\Z\) | Not in database |
$18$ | 18.0.191500465912938345959971172352.1 | \(\Z/18\Z\) | Not in database |
$18$ | 18.0.17562004153576323166412542958874624.1 | \(\Z/2\Z \oplus \Z/18\Z\) | Not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | ss | add | ord | ord | ord | ord | ord | split | ss | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | 2,5 | - | 1 | 1 | 1 | 1 | 1 | 2 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | 0,0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.