Show commands:
SageMath
E = EllipticCurve("a1")
E.isogeny_class()
Elliptic curves in class 171.a
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
171.a1 | 171a3 | \([1, -1, 1, -914, -10402]\) | \(115714886617/1539\) | \(1121931\) | \([2]\) | \(48\) | \(0.30430\) | |
171.a2 | 171a2 | \([1, -1, 1, -59, -142]\) | \(30664297/3249\) | \(2368521\) | \([2, 2]\) | \(24\) | \(-0.042276\) | |
171.a3 | 171a1 | \([1, -1, 1, -14, 20]\) | \(389017/57\) | \(41553\) | \([4]\) | \(12\) | \(-0.38885\) | \(\Gamma_0(N)\)-optimal |
171.a4 | 171a4 | \([1, -1, 1, 76, -790]\) | \(67419143/390963\) | \(-285012027\) | \([2]\) | \(48\) | \(0.30430\) |
Rank
sage: E.rank()
The elliptic curves in class 171.a have rank \(0\).
Complex multiplication
The elliptic curves in class 171.a do not have complex multiplication.Modular form 171.2.a.a
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.