Properties

Label 170352ez
Number of curves $2$
Conductor $170352$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ez1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 170352ez have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(7\)\(1 + T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(11\) \( 1 - T + 11 T^{2}\) 1.11.ab
\(17\) \( 1 - T + 17 T^{2}\) 1.17.ab
\(19\) \( 1 - T + 19 T^{2}\) 1.19.ab
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 + 9 T + 29 T^{2}\) 1.29.j
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 170352ez do not have complex multiplication.

Modular form 170352.2.a.ez

Copy content sage:E.q_eigenform(10)
 
\(q + q^{7} + 2 q^{11} + 6 q^{17} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 170352ez

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
170352.du2 170352ez1 \([0, 0, 0, -15701790, 24583874159]\) \(-7604375980288000/236743082667\) \(-13328611921510615849392\) \([2]\) \(10321920\) \(3.0221\) \(\Gamma_0(N)\)-optimal
170352.du1 170352ez2 \([0, 0, 0, -253076655, 1549622431838]\) \(1989996724085074000/1843096437\) \(1660258326685460366592\) \([2]\) \(20643840\) \(3.3687\)