| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
| 169756.a1 |
169756a1 |
169756.a |
169756a |
$1$ |
$1$ |
\( 2^{2} \cdot 31 \cdot 37^{2} \) |
\( 2^{8} \cdot 31^{2} \cdot 37^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$74$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$4333824$ |
$2.137657$ |
$172233326592/35557$ |
$0.94290$ |
$4.40810$ |
$[0, 0, 0, -1007584, 389217652]$ |
\(y^2=x^3-1007584x+389217652\) |
74.2.0.? |
$[ ]$ |
| 169756.b1 |
169756b1 |
169756.b |
169756b |
$1$ |
$1$ |
\( 2^{2} \cdot 31 \cdot 37^{2} \) |
\( 2^{8} \cdot 31^{2} \cdot 37^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$74$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$9061632$ |
$2.374294$ |
$13019746000896/35557$ |
$0.92738$ |
$4.76728$ |
$[0, 0, 0, -4260328, 3384633460]$ |
\(y^2=x^3-4260328x+3384633460\) |
74.2.0.? |
$[ ]$ |
| 169756.c1 |
169756c1 |
169756.c |
169756c |
$1$ |
$1$ |
\( 2^{2} \cdot 31 \cdot 37^{2} \) |
\( - 2^{4} \cdot 31 \cdot 37^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$62$ |
$2$ |
$0$ |
$0.816240197$ |
$1$ |
|
$4$ |
$9192960$ |
$2.594036$ |
$-18301152350854912/42439$ |
$1.11611$ |
$5.13895$ |
$[0, 1, 0, -18939202, 31717884081]$ |
\(y^2=x^3+x^2-18939202x+31717884081\) |
62.2.0.a.1 |
$[(2528, 1369)]$ |
| 169756.d1 |
169756d1 |
169756.d |
169756d |
$2$ |
$3$ |
\( 2^{2} \cdot 31 \cdot 37^{2} \) |
\( - 2^{4} \cdot 31 \cdot 37^{6} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$6882$ |
$16$ |
$0$ |
$6.127815108$ |
$1$ |
|
$4$ |
$290304$ |
$1.033697$ |
$-87808/31$ |
$0.69864$ |
$3.01419$ |
$[0, 1, 0, -3194, 87109]$ |
\(y^2=x^3+x^2-3194x+87109\) |
3.4.0.a.1, 62.2.0.a.1, 111.8.0.?, 186.8.0.?, 6882.16.0.? |
$[(85/2, 1369/2), (189/5, 31487/5)]$ |
| 169756.d2 |
169756d2 |
169756.d |
169756d |
$2$ |
$3$ |
\( 2^{2} \cdot 31 \cdot 37^{2} \) |
\( - 2^{4} \cdot 31^{3} \cdot 37^{6} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$6882$ |
$16$ |
$0$ |
$6.127815108$ |
$1$ |
|
$6$ |
$870912$ |
$1.583004$ |
$38112512/29791$ |
$0.88754$ |
$3.47897$ |
$[0, 1, 0, 24186, -849287]$ |
\(y^2=x^3+x^2+24186x-849287\) |
3.4.0.a.1, 62.2.0.a.1, 111.8.0.?, 186.8.0.?, 6882.16.0.? |
$[(86, 1369), (186, 3181)]$ |
| 169756.e1 |
169756e1 |
169756.e |
169756e |
$1$ |
$1$ |
\( 2^{2} \cdot 31 \cdot 37^{2} \) |
\( 2^{4} \cdot 31^{2} \cdot 37^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.2.0.1 |
2Cn |
$4588$ |
$12$ |
$0$ |
$17.50786073$ |
$1$ |
|
$0$ |
$3996000$ |
$2.640015$ |
$120209152/961$ |
$0.80261$ |
$4.77379$ |
$[0, -1, 0, -4373042, -3493991411]$ |
\(y^2=x^3-x^2-4373042x-3493991411\) |
2.2.0.a.1, 74.6.0.?, 4588.12.0.? |
$[(-365517391/536, 454069794103/536)]$ |
| 169756.f1 |
169756f1 |
169756.f |
169756f |
$1$ |
$1$ |
\( 2^{2} \cdot 31 \cdot 37^{2} \) |
\( 2^{4} \cdot 31^{2} \cdot 37^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.2.0.1 |
2Cn |
$4588$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$108000$ |
$0.834555$ |
$120209152/961$ |
$0.80261$ |
$2.97464$ |
$[0, -1, 0, -3194, -67943]$ |
\(y^2=x^3-x^2-3194x-67943\) |
2.2.0.a.1, 74.6.0.?, 124.4.0.?, 4588.12.0.? |
$[ ]$ |
| 169756.g1 |
169756g1 |
169756.g |
169756g |
$1$ |
$1$ |
\( 2^{2} \cdot 31 \cdot 37^{2} \) |
\( - 2^{4} \cdot 31 \cdot 37^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2294$ |
$2$ |
$0$ |
$29.28664288$ |
$1$ |
|
$0$ |
$2413152$ |
$2.271030$ |
$-351250267373568/1147$ |
$0.98833$ |
$4.81067$ |
$[0, 0, 0, -5070776, -4395008851]$ |
\(y^2=x^3-5070776x-4395008851\) |
2294.2.0.? |
$[(3956202636439/31379, 6186721075904549842/31379)]$ |
| 169756.h1 |
169756h1 |
169756.h |
169756h |
$1$ |
$1$ |
\( 2^{2} \cdot 31 \cdot 37^{2} \) |
\( - 2^{4} \cdot 31 \cdot 37^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$62$ |
$2$ |
$0$ |
$7.962647059$ |
$1$ |
|
$0$ |
$311040$ |
$1.246469$ |
$-33958656/31$ |
$1.22690$ |
$3.46952$ |
$[0, 0, 0, -23273, -1367631]$ |
\(y^2=x^3-23273x-1367631\) |
62.2.0.a.1 |
$[(122063/23, 28657277/23)]$ |
| 169756.i1 |
169756i1 |
169756.i |
169756i |
$1$ |
$1$ |
\( 2^{2} \cdot 31 \cdot 37^{2} \) |
\( - 2^{4} \cdot 31 \cdot 37^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$62$ |
$2$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$787968$ |
$1.604958$ |
$2370816/42439$ |
$0.79834$ |
$3.53059$ |
$[0, 0, 0, 9583, -1975467]$ |
\(y^2=x^3+9583x-1975467\) |
62.2.0.a.1 |
$[ ]$ |
| 169756.j1 |
169756j1 |
169756.j |
169756j |
$1$ |
$1$ |
\( 2^{2} \cdot 31 \cdot 37^{2} \) |
\( - 2^{4} \cdot 31 \cdot 37^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2294$ |
$2$ |
$0$ |
$3.172066123$ |
$1$ |
|
$0$ |
$1329696$ |
$1.912939$ |
$1811939328/1570243$ |
$1.03599$ |
$3.79964$ |
$[0, 0, 0, 87616, -7040767]$ |
\(y^2=x^3+87616x-7040767\) |
2294.2.0.? |
$[(19684/3, 2785915/3)]$ |
| 169756.k1 |
169756k1 |
169756.k |
169756k |
$1$ |
$1$ |
\( 2^{2} \cdot 31 \cdot 37^{2} \) |
\( 2^{8} \cdot 31^{2} \cdot 37^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$74$ |
$2$ |
$0$ |
$6.757235226$ |
$1$ |
|
$0$ |
$919296$ |
$2.023411$ |
$16000000000/35557$ |
$0.96143$ |
$4.21077$ |
$[0, 1, 0, -456333, -118575073]$ |
\(y^2=x^3+x^2-456333x-118575073\) |
74.2.0.? |
$[(3229/2, 50437/2)]$ |
| 169756.l1 |
169756l1 |
169756.l |
169756l |
$1$ |
$1$ |
\( 2^{2} \cdot 31 \cdot 37^{2} \) |
\( - 2^{4} \cdot 31^{3} \cdot 37^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$62$ |
$2$ |
$0$ |
$20.44904754$ |
$1$ |
|
$0$ |
$2363904$ |
$2.183769$ |
$-13936624384/40783879$ |
$0.83089$ |
$4.11863$ |
$[0, -1, 0, -172950, -68074387]$ |
\(y^2=x^3-x^2-172950x-68074387\) |
62.2.0.a.1 |
$[(277315128713/916, 146035802991252771/916)]$ |