Properties

Label 169065r
Number of curves $2$
Conductor $169065$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("r1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 169065r have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(5\)\(1 - T\)
\(13\)\(1 - T\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + 2 T^{2}\) 1.2.a
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(11\) \( 1 - 3 T + 11 T^{2}\) 1.11.ad
\(19\) \( 1 + T + 19 T^{2}\) 1.19.b
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 + 3 T + 29 T^{2}\) 1.29.d
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 169065r do not have complex multiplication.

Modular form 169065.2.a.r

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{4} + q^{5} + q^{7} - 3 q^{11} + q^{13} + 4 q^{16} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 169065r

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
169065.t2 169065r1 \([0, 0, 1, 3468, -101945]\) \(7077888/10985\) \(-7159082277555\) \([]\) \(241920\) \(1.1519\) \(\Gamma_0(N)\)-optimal
169065.t1 169065r2 \([0, 0, 1, -109242, -13961518]\) \(-303464448/1625\) \(-772037127268875\) \([]\) \(725760\) \(1.7012\)