Properties

Label 16830d
Number of curves 2
Conductor 16830
CM no
Rank 1
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath

sage: E = EllipticCurve("16830.a1")
sage: E.isogeny_class()

Elliptic curves in class 16830d

sage: E.isogeny_class().curves
LMFDB label Cremona label Weierstrass coefficients Torsion order Modular degree Optimality
16830.a1 16830d1 [1, -1, 0, -249330, -47842924] 2 153600 \(\Gamma_0(N)\)-optimal
16830.a2 16830d2 [1, -1, 0, -214650, -61652500] 2 307200  

Rank

sage: E.rank()

The elliptic curves in class 16830d have rank \(1\).

Modular form 16830.2.a.a

sage: E.q_eigenform(10)
\( q - q^{2} + q^{4} - q^{5} - 4q^{7} - q^{8} + q^{10} - q^{11} - 4q^{13} + 4q^{14} + q^{16} - q^{17} - 2q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with Cremona labels.