Properties

Label 16830c1
Conductor 16830
Discriminant 625722570000
j-invariant \( \frac{193802978403}{31790000} \)
CM no
Rank 1
Torsion Structure \(\Z/{2}\Z\)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Minimal Weierstrass equation

magma: E := EllipticCurve([1, -1, 0, -3255, 61325]); // or
magma: E := EllipticCurve("16830c1");
sage: E = EllipticCurve([1, -1, 0, -3255, 61325]) # or
sage: E = EllipticCurve("16830c1")
gp: E = ellinit([1, -1, 0, -3255, 61325]) \\ or
gp: E = ellinit("16830c1")

\( y^2 + x y = x^{3} - x^{2} - 3255 x + 61325 \)

Mordell-Weil group structure

\(\Z\times \Z/{2}\Z\)

Infinite order Mordell-Weil generator and height

magma: Generators(E);
sage: E.gens()

\(P\) =  \( \left(5, 210\right) \)
\(\hat{h}(P)\) ≈  0.98866864411

Torsion generators

magma: TorsionSubgroup(E);
sage: E.torsion_subgroup().gens()
gp: elltors(E)

\( \left(22, -11\right) \)

Integral points

magma: IntegralPoints(E);
sage: E.integral_points()

\( \left(5, 210\right) \), \( \left(22, -11\right) \), \( \left(47, 79\right) \), \( \left(130, 1285\right) \)

Note: only one of each pair $\pm P$ is listed.

Invariants

magma: Conductor(E);
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
Conductor: \( 16830 \)  =  \(2 \cdot 3^{2} \cdot 5 \cdot 11 \cdot 17\)
magma: Discriminant(E);
sage: E.discriminant().factor()
gp: E.disc
Discriminant: \(625722570000 \)  =  \(2^{4} \cdot 3^{9} \cdot 5^{4} \cdot 11 \cdot 17^{2} \)
magma: jInvariant(E);
sage: E.j_invariant().factor()
gp: E.j
j-invariant: \( \frac{193802978403}{31790000} \)  =  \(2^{-4} \cdot 3^{6} \cdot 5^{-4} \cdot 11^{-1} \cdot 17^{-2} \cdot 643^{3}\)
Endomorphism ring: \(\Z\)   (no Complex Multiplication)
Sato-Tate Group: $\mathrm{SU}(2)$

BSD invariants

magma: Rank(E);
sage: E.rank()
Rank: \(1\)
magma: Regulator(E);
sage: E.regulator()
Regulator: \(0.98866864411\)
magma: RealPeriod(E);
sage: E.period_lattice().omega()
gp: E.omega[1]
Real period: \(0.87252015863\)
magma: TamagawaNumbers(E);
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
Tamagawa product: \( 16 \)  = \( 2\cdot2\cdot2\cdot1\cdot2 \)
magma: Order(TorsionSubgroup(E));
sage: E.torsion_order()
gp: elltors(E)[1]
Torsion order: \(2\)
magma: MordellWeilShaInformation(E);
sage: E.sha().an_numerical()
Analytic order of Ш: \(1\) (exact)

Modular invariants

Modular form 16830.2.a.p

magma: ModularForm(E);
sage: E.q_eigenform(20)
gp: xy = elltaniyama(E);
gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

\( q - q^{2} + q^{4} - q^{5} + 2q^{7} - q^{8} + q^{10} - q^{11} - 6q^{13} - 2q^{14} + q^{16} - q^{17} + 4q^{19} + O(q^{20}) \)

For more coefficients, see the Downloads section to the right.

magma: ModularDegree(E);
sage: E.modular_degree()
Modular degree: 36864
\( \Gamma_0(N) \)-optimal: yes
Manin constant: 1

Special L-value

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
sage: r = E.rank();
sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()
gp: ar = ellanalyticrank(E);
gp: ar[2]/factorial(ar[1])

\( L'(E,1) \) ≈ \( 3.45053328877 \)

Local data

magma: [LocalInformation(E,p) : p in BadPrimes(E)];
sage: E.local_data()
gp: ellglobalred(E)[5]
prime Tamagawa number Kodaira symbol Reduction type Root number ord(\(N\)) ord(\(\Delta\)) ord\((j)_{-}\)
\(2\) \(2\) \( I_{4} \) Non-split multiplicative 1 1 4 4
\(3\) \(2\) \( III^{*} \) Additive 1 2 9 0
\(5\) \(2\) \( I_{4} \) Non-split multiplicative 1 1 4 4
\(11\) \(1\) \( I_{1} \) Non-split multiplicative 1 1 1 1
\(17\) \(2\) \( I_{2} \) Non-split multiplicative 1 1 2 2

Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X6.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^1\Z_2)$ generated by $\left(\begin{array}{rr} 1 & 1 \\ 0 & 1 \end{array}\right)$ and has index 3.

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
sage: rho = E.galois_representation();
sage: [rho.image_type(p) for p in rho.non_surjective()]

The mod \( p \) Galois representation has maximal image \(\GL(2,\F_p)\) for all primes \( p \) except those listed.

prime Image of Galois representation
\(2\) B

$p$-adic data

$p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]

Note: \(p\)-adic regulator data only exists for primes \(p\ge5\) of good ordinary reduction.

Iwasawa invariants

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type nonsplit add nonsplit ordinary nonsplit ordinary nonsplit ordinary ordinary ordinary ss ordinary ordinary ordinary ordinary
$\lambda$-invariant(s) 6 - 1 1 1 1 1 1 1 1 1,1 1 1 1 1
$\mu$-invariant(s) 0 - 0 0 0 0 0 0 0 0 0,0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

Isogenies

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 16830c consists of 2 curves linked by isogenies of degree 2.

Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base-change curve
2 \(\Q(\sqrt{33}) \) \(\Z/2\Z \times \Z/2\Z\) Not in database
4 4.0.85833.2 \(\Z/4\Z\) Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.