Minimal Weierstrass equation
\( y^2 + x y = x^{3} - x^{2} - 24639 x - 2739547 \)
Mordell-Weil group structure
Infinite order Mordell-Weil generator and height
\(P\) | = | \( \left(\frac{7279}{36}, \frac{133045}{216}\right) \) |
\(\hat{h}(P)\) | ≈ | 9.31156978681 |
Torsion generators
\( \left(\frac{787}{4}, -\frac{787}{8}\right) \)
Integral points
Invariants
magma: Conductor(E);
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
|
|||||
Conductor: | \( 16830 \) | = | \(2 \cdot 3^{2} \cdot 5 \cdot 11 \cdot 17\) | ||
magma: Discriminant(E);
sage: E.discriminant().factor()
gp: E.disc
|
|||||
Discriminant: | \(-2299482889834680 \) | = | \(-1 \cdot 2^{3} \cdot 3^{9} \cdot 5 \cdot 11^{2} \cdot 17^{6} \) | ||
magma: jInvariant(E);
sage: E.j_invariant().factor()
gp: E.j
|
|||||
j-invariant: | \( -\frac{84044939142627}{116825833960} \) | = | \(-1 \cdot 2^{-3} \cdot 3^{6} \cdot 5^{-1} \cdot 11^{-2} \cdot 17^{-6} \cdot 31^{3} \cdot 157^{3}\) | ||
Endomorphism ring: | \(\Z\) | (no Complex Multiplication) | |||
Sato-Tate Group: | $\mathrm{SU}(2)$ |
BSD invariants
magma: Rank(E);
sage: E.rank()
|
|||
Rank: | \(1\) | ||
magma: Regulator(E);
sage: E.regulator()
|
|||
Regulator: | \(9.31156978681\) | ||
magma: RealPeriod(E);
sage: E.period_lattice().omega()
gp: E.omega[1]
|
|||
Real period: | \(0.181326931941\) | ||
magma: TamagawaNumbers(E);
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
|
|||
Tamagawa product: | \( 8 \) = \( 1\cdot2\cdot1\cdot2\cdot2 \) | ||
magma: Order(TorsionSubgroup(E));
sage: E.torsion_order()
gp: elltors(E)[1]
|
|||
Torsion order: | \(2\) | ||
magma: MordellWeilShaInformation(E);
sage: E.sha().an_numerical()
|
|||
Analytic order of Ш: | \(1\) (exact) |
Modular invariants
Modular form 16830.2.a.v
magma: ModularDegree(E);
sage: E.modular_degree()
|
|||
Modular degree: | 96768 | ||
\( \Gamma_0(N) \)-optimal: | no | ||
Manin constant: | 1 |
Special L-value
\( L'(E,1) \) ≈ \( 3.376876762 \)
Local data
prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(N\)) | ord(\(\Delta\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|
\(2\) | \(1\) | \( I_{3} \) | Non-split multiplicative | 1 | 1 | 3 | 3 |
\(3\) | \(2\) | \( III^{*} \) | Additive | 1 | 2 | 9 | 0 |
\(5\) | \(1\) | \( I_{1} \) | Split multiplicative | -1 | 1 | 1 | 1 |
\(11\) | \(2\) | \( I_{2} \) | Split multiplicative | -1 | 1 | 2 | 2 |
\(17\) | \(2\) | \( I_{6} \) | Non-split multiplicative | 1 | 1 | 6 | 6 |
Galois representations
The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X6.
This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^1\Z_2)$ generated by $\left(\begin{array}{rr} 1 & 1 \\ 0 & 1 \end{array}\right)$ and has index 3.
The mod \( p \) Galois representation has maximal image \(\GL(2,\F_p)\) for all primes \( p \) except those listed.
prime | Image of Galois representation |
---|---|
\(2\) | B |
\(3\) | B.1.2 |
$p$-adic data
$p$-adic regulators
\(p\)-adic regulators are not yet computed for curves that are not \(\Gamma_0\)-optimal.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | nonsplit | add | split | ordinary | split | ordinary | nonsplit | ordinary | ss | ordinary | ordinary | ordinary | ordinary | ordinary | ss |
$\lambda$-invariant(s) | 4 | - | 8 | 1 | 4 | 1 | 1 | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1,1 |
$\mu$-invariant(s) | 1 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
Isogenies
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2, 3 and 6.
Its isogeny class 16830.v
consists of 4 curves linked by isogenies of
degrees dividing 6.
Growth of torsion in number fields
The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base-change curve |
---|---|---|---|
2 | \(\Q(\sqrt{-30}) \) | \(\Z/2\Z \times \Z/2\Z\) | Not in database |
\(\Q(\sqrt{-3}) \) | \(\Z/6\Z\) | Not in database | |
3 | 3.1.81675.1 | \(\Z/6\Z\) | Not in database |
4 | \(\Q(\sqrt{-3}, \sqrt{10})\) | \(\Z/2\Z \times \Z/6\Z\) | Not in database |
4.2.151066080.3 | \(\Z/4\Z\) | Not in database | |
6 | 6.0.20012416875.1 | \(\Z/3\Z \times \Z/6\Z\) | Not in database |
6.0.51231787200000.3 | \(\Z/2\Z \times \Z/6\Z\) | Not in database |
We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.