Properties

Label 16830.p
Number of curves 2
Conductor 16830
CM no
Rank 1
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath

sage: E = EllipticCurve("16830.p1")
sage: E.isogeny_class()

Elliptic curves in class 16830.p

sage: E.isogeny_class().curves
LMFDB label Cremona label Weierstrass coefficients Torsion order Modular degree Optimality
16830.p1 16830c1 [1, -1, 0, -3255, 61325] 2 36864 \(\Gamma_0(N)\)-optimal
16830.p2 16830c2 [1, -1, 0, 5925, 338561] 2 73728  

Rank

sage: E.rank()

The elliptic curves in class 16830.p have rank \(1\).

Modular form 16830.2.a.p

sage: E.q_eigenform(10)
\( q - q^{2} + q^{4} - q^{5} + 2q^{7} - q^{8} + q^{10} - q^{11} - 6q^{13} - 2q^{14} + q^{16} - q^{17} + 4q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels.