Properties

Label 16830.g
Number of curves 2
Conductor 16830
CM no
Rank 1
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath

sage: E = EllipticCurve("16830.g1")
sage: E.isogeny_class()

Elliptic curves in class 16830.g

sage: E.isogeny_class().curves
LMFDB label Cremona label Weierstrass coefficients Torsion order Modular degree Optimality
16830.g1 16830u2 [1, -1, 0, -105840, -13219200] 2 86016  
16830.g2 16830u1 [1, -1, 0, -7920, -117504] 2 43008 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()

The elliptic curves in class 16830.g have rank \(1\).

Modular form 16830.2.a.g

sage: E.q_eigenform(10)
\( q - q^{2} + q^{4} - q^{5} - 2q^{7} - q^{8} + q^{10} + q^{11} - 4q^{13} + 2q^{14} + q^{16} - q^{17} - 6q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels.