Show commands for:
SageMath
sage: E = EllipticCurve("o1")
sage: E.isogeny_class()
Elliptic curves in class 1680.o
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
1680.o1 | 1680r3 | [0, 1, 0, -5976, -179820] | [2] | 1536 | |
1680.o2 | 1680r2 | [0, 1, 0, -376, -2860] | [2, 2] | 768 | |
1680.o3 | 1680r1 | [0, 1, 0, -56, 84] | [2] | 384 | \(\Gamma_0(N)\)-optimal |
1680.o4 | 1680r4 | [0, 1, 0, 104, -9196] | [2] | 1536 |
Rank
sage: E.rank()
The elliptic curves in class 1680.o have rank \(0\).
Complex multiplication
The elliptic curves in class 1680.o do not have complex multiplication.Modular form 1680.2.a.o
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.