Properties

Label 16758bc
Number of curves $3$
Conductor $16758$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bc1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 16758bc have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1\)
\(7\)\(1\)
\(19\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(11\) \( 1 + 2 T + 11 T^{2}\) 1.11.c
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(23\) \( 1 + 2 T + 23 T^{2}\) 1.23.c
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 16758bc do not have complex multiplication.

Modular form 16758.2.a.bc

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{4} + q^{8} + 6 q^{11} - 5 q^{13} + q^{16} + 3 q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrr} 1 & 3 & 9 \\ 3 & 1 & 3 \\ 9 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 16758bc

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
16758.bg2 16758bc1 \([1, -1, 1, -6845, 219741]\) \(-413493625/152\) \(-13036450392\) \([]\) \(22680\) \(0.90882\) \(\Gamma_0(N)\)-optimal
16758.bg3 16758bc2 \([1, -1, 1, 4180, 827439]\) \(94196375/3511808\) \(-301194149856768\) \([]\) \(68040\) \(1.4581\)  
16758.bg1 16758bc3 \([1, -1, 1, -37715, -22667277]\) \(-69173457625/2550136832\) \(-218715344099868672\) \([]\) \(204120\) \(2.0074\)