Show commands for:
SageMath
sage: E = EllipticCurve("f1")
sage: E.isogeny_class()
Elliptic curves in class 166410f
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
166410.ct2 | 166410f1 | [1, -1, 1, 2579008, -578956309] | [] | 8322048 | \(\Gamma_0(N)\)-optimal |
166410.ct1 | 166410f2 | [1, -1, 1, -29621327, 72605965079] | [3] | 24966144 |
Rank
sage: E.rank()
The elliptic curves in class 166410f have rank \(0\).
Complex multiplication
The elliptic curves in class 166410f do not have complex multiplication.Modular form 166410.2.a.f
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.