Show commands for:
SageMath
sage: E = EllipticCurve("a1")
sage: E.isogeny_class()
Elliptic curves in class 166410.a
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
166410.a1 | 166410by3 | [1, -1, 0, -13953825, 19929326575] | [2] | 11354112 | |
166410.a2 | 166410by2 | [1, -1, 0, -1473075, -172169375] | [2, 2] | 5677056 | |
166410.a3 | 166410by1 | [1, -1, 0, -1140255, -467780099] | [2] | 2838528 | \(\Gamma_0(N)\)-optimal |
166410.a4 | 166410by4 | [1, -1, 0, 5682555, -1358572829] | [2] | 11354112 |
Rank
sage: E.rank()
The elliptic curves in class 166410.a have rank \(1\).
Complex multiplication
The elliptic curves in class 166410.a do not have complex multiplication.Modular form 166410.2.a.a
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.