Properties

Label 165165.u
Number of curves $4$
Conductor $165165$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("u1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 165165.u have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1 - T\)
\(5\)\(1 - T\)
\(7\)\(1 + T\)
\(11\)\(1\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + T + 2 T^{2}\) 1.2.b
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 165165.u do not have complex multiplication.

Modular form 165165.2.a.u

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{3} - q^{4} + q^{5} - q^{6} - q^{7} + 3 q^{8} + q^{9} - q^{10} - q^{12} - q^{13} + q^{14} + q^{15} - q^{16} - 2 q^{17} - q^{18} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 165165.u

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
165165.u1 165165n4 \([1, 0, 0, -18211410, -17358387903]\) \(377049455876971757881/144736610099956875\) \(256409733725289701431875\) \([2]\) \(16220160\) \(3.1909\)  
165165.u2 165165n2 \([1, 0, 0, -8089155, 8661880800]\) \(33042817838684613961/823326411132225\) \(1458572960231815653225\) \([2, 2]\) \(8110080\) \(2.8443\)  
165165.u3 165165n1 \([1, 0, 0, -8040150, 8774268867]\) \(32445917389944971641/20917681785\) \(37056949260716385\) \([4]\) \(4055040\) \(2.4977\) \(\Gamma_0(N)\)-optimal
165165.u4 165165n3 \([1, 0, 0, 1249020, 27489509235]\) \(121639816754787239/184341956658895035\) \(-326573021080588747099635\) \([2]\) \(16220160\) \(3.1909\)