Show commands: SageMath
Rank
The elliptic curves in class 1650s have rank \(0\).
L-function data
Bad L-factors: |
| ||||||||||||||||||||||||
Good L-factors: |
| ||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 1650s do not have complex multiplication.Modular form 1650.2.a.s
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 5 \\ 5 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 1650s
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
1650.s1 | 1650s1 | \([1, 0, 0, -903, 10377]\) | \(-3257444411545/2737152\) | \(-68428800\) | \([5]\) | \(1200\) | \(0.43117\) | \(\Gamma_0(N)\)-optimal |
1650.s2 | 1650s2 | \([1, 0, 0, 6237, -87483]\) | \(2747555975/1932612\) | \(-18873164062500\) | \([]\) | \(6000\) | \(1.2359\) |