Properties

Label 164934cw
Number of curves $2$
Conductor $164934$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("cw1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 164934cw

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
164934.r1 164934cw1 [1, -1, 0, -398673, 96222685] [2] 2580480 \(\Gamma_0(N)\)-optimal
164934.r2 164934cw2 [1, -1, 0, -116433, 229609309] [2] 5160960  

Rank

sage: E.rank()
 

The elliptic curves in class 164934cw have rank \(0\).

Complex multiplication

The elliptic curves in class 164934cw do not have complex multiplication.

Modular form 164934.2.a.cw

sage: E.q_eigenform(10)
 
\( q - q^{2} + q^{4} - 2q^{5} - q^{8} + 2q^{10} + q^{11} + 4q^{13} + q^{16} - q^{17} + 8q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.