Show commands:
SageMath
E = EllipticCurve("t1")
E.isogeny_class()
Elliptic curves in class 1638.t
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
1638.t1 | 1638n2 | \([1, -1, 1, -191, -1511]\) | \(-38958219/30758\) | \(-605409714\) | \([]\) | \(864\) | \(0.38364\) | |
1638.t2 | 1638n1 | \([1, -1, 1, 19, 29]\) | \(29503629/35672\) | \(-963144\) | \([3]\) | \(288\) | \(-0.16566\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 1638.t have rank \(0\).
Complex multiplication
The elliptic curves in class 1638.t do not have complex multiplication.Modular form 1638.2.a.t
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.