Properties

Label 1638.q
Number of curves $1$
Conductor $1638$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("q1")
 
E.isogeny_class()
 

Elliptic curves in class 1638.q

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1638.q1 1638s1 \([1, -1, 1, -200, -23669]\) \(-1207949625/332678528\) \(-242522646912\) \([]\) \(1960\) \(0.86374\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 1638.q1 has rank \(0\).

Complex multiplication

The elliptic curves in class 1638.q do not have complex multiplication.

Modular form 1638.2.a.q

sage: E.q_eigenform(10)
 
\(q + q^{2} + q^{4} + q^{7} + q^{8} + 5 q^{11} - q^{13} + q^{14} + q^{16} + 4 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display