Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy+y=x^3-x^2+82x-835\) | (homogenize, simplify) |
\(y^2z+xyz+yz^2=x^3-x^2z+82xz^2-835z^3\) | (dehomogenize, simplify) |
\(y^2=x^3+1317x-52106\) | (homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Infinite order Mordell-Weil generator and height
$P$ | = | \(\left(9, 19\right)\) |
$\hat{h}(P)$ | ≈ | $0.12712802816866786952710560104$ |
Integral points
\( \left(7, 3\right) \), \( \left(7, -11\right) \), \( \left(9, 19\right) \), \( \left(9, -29\right) \), \( \left(25, 115\right) \), \( \left(25, -141\right) \), \( \left(57, 403\right) \), \( \left(57, -461\right) \), \( \left(225, 3259\right) \), \( \left(225, -3485\right) \)
Invariants
Conductor: | \( 1638 \) | = | $2 \cdot 3^{2} \cdot 7 \cdot 13$ | comment: Conductor
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
oscar: conductor(E)
|
Discriminant: | $-322043904 $ | = | $-1 \cdot 2^{17} \cdot 3^{3} \cdot 7 \cdot 13 $ | comment: Discriminant
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
oscar: discriminant(E)
|
j-invariant: | \( \frac{2284322013}{11927552} \) | = | $2^{-17} \cdot 3^{3} \cdot 7^{-1} \cdot 13^{-1} \cdot 439^{3}$ | comment: j-invariant
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
oscar: j_invariant(E)
|
Endomorphism ring: | $\Z$ | |||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | sage: E.has_cm()
magma: HasComplexMultiplication(E);
| |
Sato-Tate group: | $\mathrm{SU}(2)$ | |||
Faltings height: | $0.31466826493975416686657906440\dots$ | gp: ellheight(E)
magma: FaltingsHeight(E);
oscar: faltings_height(E)
|
||
Stable Faltings height: | $0.040015192772726744017767755169\dots$ | magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
|
||
$abc$ quality: | $0.9532470539901062\dots$ | |||
Szpiro ratio: | $3.638239257416493\dots$ |
BSD invariants
Analytic rank: | $1$ | sage: E.analytic_rank()
gp: ellanalyticrank(E)
magma: AnalyticRank(E);
|
Regulator: | $0.12712802816866786952710560104\dots$ | comment: Regulator
sage: E.regulator()
G = E.gen \\ if available
magma: Regulator(E);
|
Real period: | $0.86233089973317541588094371810\dots$ | comment: Real Period
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
|
Tamagawa product: | $ 34 $ = $ 17\cdot2\cdot1\cdot1 $ | comment: Tamagawa numbers
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
|
Torsion order: | $1$ | comment: Torsion order
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
|
Analytic order of Ш: | $1$ ( rounded) | comment: Order of Sha
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
Special value: | $ L'(E,1) $ ≈ $ 3.7272985150077223044699764092 $ | comment: Special L-value
r = E.rank();
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
|
BSD formula
$\displaystyle 3.727298515 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.862331 \cdot 0.127128 \cdot 34}{1^2} \approx 3.727298515$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 544 | comment: Modular degree
sage: E.modular_degree()
gp: ellmoddegree(E)
magma: ModularDegree(E);
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 | comment: Manin constant
magma: ManinConstant(E);
|
Local data
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $v_p(N)$ | $v_p(\Delta)$ | $v_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $17$ | $I_{17}$ | split multiplicative | -1 | 1 | 17 | 17 |
$3$ | $2$ | $III$ | additive | 1 | 2 | 3 | 0 |
$7$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
$13$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$.
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 2184 = 2^{3} \cdot 3 \cdot 7 \cdot 13 \), index $2$, genus $0$, and generators
$\left(\begin{array}{rr} 1457 & 2 \\ 1457 & 3 \end{array}\right),\left(\begin{array}{rr} 2017 & 2 \\ 2017 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 1093 & 2 \\ 1093 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 2183 & 2 \\ 2182 & 3 \end{array}\right),\left(\begin{array}{rr} 1249 & 2 \\ 1249 & 3 \end{array}\right),\left(\begin{array}{rr} 1639 & 2 \\ 1639 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 2183 & 0 \end{array}\right)$.
The torsion field $K:=\Q(E[2184])$ is a degree-$1947721531392$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/2184\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 273 = 3 \cdot 7 \cdot 13 \) |
$3$ | additive | $6$ | \( 182 = 2 \cdot 7 \cdot 13 \) |
$7$ | nonsplit multiplicative | $8$ | \( 234 = 2 \cdot 3^{2} \cdot 13 \) |
$13$ | split multiplicative | $14$ | \( 126 = 2 \cdot 3^{2} \cdot 7 \) |
$17$ | good | $2$ | \( 819 = 3^{2} \cdot 7 \cdot 13 \) |
Isogenies
This curve has no rational isogenies. Its isogeny class 1638.n consists of this curve only.
Twists
The minimal quadratic twist of this elliptic curve is 1638.g1, its twist by $-3$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$3$ | 3.1.2184.1 | \(\Z/2\Z\) | not in database |
$6$ | 6.0.10417365504.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$8$ | 8.2.2399575035312.9 | \(\Z/3\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | split | add | ord | nonsplit | ord | split | ord | ord | ord | ord | ord | ord | ord | ord | ss |
$\lambda$-invariant(s) | 3 | - | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1,1 |
$\mu$-invariant(s) | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.