Properties

Label 1638.n
Number of curves $1$
Conductor $1638$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("n1")
 
E.isogeny_class()
 

Elliptic curves in class 1638.n

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1638.n1 1638k1 \([1, -1, 1, 82, -835]\) \(2284322013/11927552\) \(-322043904\) \([]\) \(544\) \(0.31467\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 1638.n1 has rank \(1\).

Complex multiplication

The elliptic curves in class 1638.n do not have complex multiplication.

Modular form 1638.2.a.n

sage: E.q_eigenform(10)
 
\(q + q^{2} + q^{4} - q^{5} - q^{7} + q^{8} - q^{10} - 5 q^{11} + q^{13} - q^{14} + q^{16} - q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display